[1] P. V. Cunha and C. A. Herdeiro, “Stationary black holes and light rings”, Physical Review Letters 124, 181101 (2020).
[2] P. V. Cunha, E. Berti, and C. A. Herdeiro, “Light-ring stability for ultracompact objects”, Physical review letters 119, 251102 (2017).
[3] S.-W. Wei, “Topological charge and black hole photon spheres”, Physical Review D 102, 064039 (2020).
[4] S.-W. Wei, Y.-X. Liu, and R. B. Mann, “Black hole solutions as topological thermodynamic defects”, Physical Review Letters 129, 191101 (2022).
[5] S.-W. Wei and Y.-X. Liu, “Topology of black hole thermodynamics”, Physical Review D 105, 104003 (2022).
[6] N.-C. Bai, L. Li, and J. Tao, “Topology of black hole thermodynamics in lovelock gravity”, Physical Review D 107, 064015 (2023).
[7] P. K. Yerra and C. Bhamidipati, “Topology of born-infeld ads black holes in 4d novel einstein-gauss-bonnet gravity”, Physics Letters B 835, 137591 (2022).
[8] J. Sadeghi, S. N. Gashti, M. R. Alipour, and M. A. S. Afshar, “Bardeen black hole thermodynamics from topological perspective”, Annals of Physics 455, 169391 (2023).
[9] D. Wu, “Topological classes of thermodynamics of the four-dimensional static accelerating black holes”, Physical Review D 108, 084041 (2023).
[10] D. Wu and S.-Q. Wu, “Topological classes of thermodynamics of rotating ads black holes”, Physical Review D 107, 084002 (2023).
[11] J. Sadeghi, M. R. Alipour, S. N. Gashti, and M. A. S. Afshar, “Bulk-boundary and rps thermodynamics from topology perspective”, Chinese Physics C 48, 095106 (2024).
[12] e. a. Wu, D., “Topological classes of thermodynamics of the static multi-charge ads black holes in gauged supergravities”, arXiv preprint arXiv:2402.00106 (2024).
[13] e. a. Sekhmani, Y., “Thermodynamic topology of black holes in f(r)-euler-heisenberg gravity’s rainbow”, arXiv preprint arXiv:2409.04997 (2024).
[14] N. J. Gogoi and P. Phukon, “Thermodynamic topology of 4d dyonic ads black holes in different ensembles”, Physical Review D 108, 066016 (2023).
[15] B. Hazarika and P. Phukon, “Thermodynamic topology of d= 4, 5 horava lifshitz black hole in two ensembles”, Nuclear Physics B 1006, 116649 (2024).
[16] J. Sadeghi, M. Afshar, S. N. Gashti, and M. Alipour, “Topology of hayward-ads black hole thermodynamics”, Physica Scripta 99, 025003 (2024).
[17] J. Sadeghi, M. A. S. Afshar, S. N. Gashti, and M. R. Alipour, “Thermodynamic topology and photon spheres in the hyperscaling violating black holes”, Astroparticle Physics 156, 102920 (2024).
[18] B. Hazarika and P. Phukon, “Thermodynamic topology of black holes in f (r) gravity”, Progress of Theoretical and Experimental Physics 2024, 043E01 (2024).
[19] D. Wu, “Consistent thermodynamics and topological classes for the four-dimensional lorentzian charged taub-nut spacetimes”, The European Physical Journal C 83, 589 (2023).
[20] B. Hazarika, B. E. Panah, and P. Phukon, “Thermodynamic topology of topological charged dilatonic black holes”, The European Physical Journal C 84, 1 (2024).
[21] S. N. Gashti, I. Sakallı, and B. Pourhassan, “Thermodynamic topology, photon spheres, and evidence for weak gravity conjecture in charged black holes with perfect fluid within rastall theory”, arXiv preprint arXiv:2410.14492 (2024).
[22] J. Sadeghi and M. A. S. Afshar, “The role of topological photon spheres in constraining the parameters of black holes”, Astroparticle Physics 162, 102994 (2024).
[23] M. A. S. Afshar and J. Sadeghi, “Effective potential and topological photon spheres: a novel approach to black hole parameter classification”, Chinese Physics C (2024).
[24] M. A. S. Afshar and J. Sadeghi, “Mutual influence of photon sphere and noncommutative parameter in various non-commutative black holes: Towards evidence for wgc”, Physics of the Dark Universe 47, 101814 (2025).
[25] B. Eslam Panah, B. Hazarika, and P. Phukon, “Thermodynamic topology of topological black hole in f (r)-modmax gravity’s rainbow”, Progress of Theoretical and Experimental Physics 2024, 083E02 (2024).
[26] D. Wu, “Consistent thermodynamics and topological classes for the four-dimensional lorentzian neutral nut-charged spacetimes”, The European Physical Journal C 83, 365 (2023).
[27] D. Wu, “Classifying topology of consistent thermodynamics of the four-dimensional neutral lorentzian nut-charged spacetimes”, The European Physical Journal C 83, 365 (2023).
[28] S.-P. Wu and S.-W. Wei, “Thermodynamical topology of quantum btz black hole”, Physical Review D 110, 024054 (2024).
[29] J. Sadeghi, M. R. Alipour, S. N. Gashti, and M. A. S. Afshar, “Bulk-boundary and rps thermodynamics from topology perspective”, Chinese Physics C 48, 095106 (2024).
[30] J. Sadeghi, S. N. Gashti, M. R. Alipour, and M. A. S. Afshar, “Thermodynamic topology of quantum corrected ads-reissner-nordstrom black holes in kiselev spacetime”, Chinese Physics C 48, 115115 (2024).
[31] B. Hazarika and P. Phukon, “Thermodynamic properties and shadows of black holes in f(r, t) gravity”, arXiv preprint arXiv:2410.00606 (2024).
[32] R. Hemant and R. Dibakar, “Topology of black hole phase transition in jt gravity (2024)”, arXiv preprint arXiv:2410.00744.
[33] S. N. Gashti, M. A. S. Afshar, M. R. Alipoury, Y. Sekhmani, J. Sadeghi, and J. Rayimbaeva, “Thermodynamic topology of kiselev-ads black holes within f (r, t) gravity”, Chinese Physics C 49, 035110 (2025).
[34] A. B. Brzo, S. N. Gashti, B. Pourhassan, and S. Beikpour, “Thermodynamic topology of ads black holes within non-commutative geometry and barrow entropy”, Nuclear Physics B, 116840 (2025).
[35] S. N. Gashti, B. Pourhassan, İ. Sakallı, and A. B. Brzo, “Thermodynamic topology and photon spheres of dirty black holes within non-extensive entropy”, Physics of the Dark Universe, 101833 (2025).
[36] M. A. S. Afshar, M. R. Alipour, S. N. Gashti, and J. Sadeghi, “Topological insights into black hole thermodynamics: Non-extensive entropy in cft framework”, arXiv preprint arXiv:2501.00955 (2025).
[37] S. N. Gashti, B. Pourhassan, and İ. Sakallı, “Thermodynamic topology and phase space analysis of ads black holes through non-extensive entropy perspectives”, The European Physical Journal C 85, 305 (2025).
[38] S. N. Gashti, “Topology of holographic thermodynamics within non-extensive entropy”, arXiv preprint arXiv:2412.00889 (2024).|
[39] M. R. Alipour, M. A. S. Afshar, S. N. Gashti, and J. Sadeghi, “Topological classification and black hole thermodynamics”, Physics of the Dark Universe 42, 101361 (2023).
[40] A. Anand and S. N. Gashti, “Universality relation and thermodynamic topology with three-parameter entropy model”, Physics of the Dark Universe 48, 101916 (2025).
[41] S. Noori Gashti and B. Pourhassan, “Non-extensive entropy and holographic thermodynamics: Topological insights”, arXiv e-prints (2024) arXiv–2412.
[42] M. A. S. Afshar and J. Sadeghi, “Wgc as wccc protector: The synergistic effects of various parameters in non-commutative black holes for identifying wgc candidate models”, Nuclear Physics B 1014, 116872 (2025).
[43] M. A. S. Afshar and J. Sadeghi, “Mechanisms behind the aschenbach effect in nonrotating black hole spacetime”, Annals of Physics, 169953 (2025).
[44] N. Heidari, I. Lobo, V. Bezerra, et al., “Gravitational signatures of a nonlinear electrodynamics in f(r, t) gravity”, arXiv preprint arXiv:2505.08718 (2025).
[45] P. V. Cunha, E. Berti, and C. A. Herdeiro, “Light-ring stability for ultracompact objects”, Physical review letters 119, 251102 (2017).
[46] S. Noori Gashti, M. A. S. Afshar, M. R. Alipour, I. Sakallı, B. Pourhassan, and J. Sadeghi, “Assessing wgc compatibility in modmax black holes via photon spheres analysis and wccc validation”, arXiv e-prints (2025) arXiv–2504.
[47] M. A. S. Afshar and J. Sadeghi, “Mechanisms behind the aschenbach effect in nonrotating black hole spacetime”, Annals of Physics, 169953 (2025).
[48] M. A. S. Afshar and J. Sadeghi, “Mutual influence of photon sphere and noncommutative parameter in various non-commutative black holes: Towards evidence for wgc”, Physics of the Dark Universe 47, 101814 (2025).
[49] M. R. Alipour, M. A. S. Afshar, S. Noori Gashti, and J. Sadeghi, “Weak gravity conjecture validation with photon spheres of quantum corrected reissner–nordstrom–ads black holes in kiselev spacetime”, The European Physical Journal C 85, 138 (2025).
[50] J. Sadeghi and M. A. S. Afshar, “The role of topological photon spheres in constraining the parameters of black holes”, Astroparticle Physics 162, 102994 (2024).
[51] M. R. Alipour, S. N. Gashti, B. Pourhassan, and İ. Sakallı, “Reconciling the weak gravity and weak cosmic censorship conjectures in einstein-euler-heisenberg-ads black holes”, arXiv preprint arXiv:2504.03453 (2025).
[52] C.-Y. Zhang, Z. Zhang, and R. Zheng, “Extraction of energy from a black hole in einstein-maxwell-scalar theory”, Science China Physics, Mechanics & Astronomy 68, 250411 (2025).
[53] O. Razina, P. Tsyba, B. Meirbekov, and R. Myrzakulov, “Cosmological einstein– maxwell model with g-essence”, International Journal of Modern Physics D 28, 1950126 (2019).
[54] D. Wang, M. Koussour, A. Malik, N. Myrzakulov, and G. Mustafa, “Observational constraints on a logarithmic scalar field dark energy model and black hole mass evolution in the universe”, The European Physical Journal C 83, 670 (2023).
[55] D. Astefanesei, C. Herdeiro, A. Pombo, and E. Radu, “Einstein-maxwell-scalar black holes: classes of solutions, dyons and extremality”, Journal of High Energy Physics 2019, 1 (2019).
[56] R. Biswas and S. Pal, “Einstein maxwell scalar black hole: Thermodynamic properties with logarithmic barrow entropy”, arXiv preprint arXiv:2505.17172 (2025).
[57] C. J. Gao and S. N. Zhang, “Dilaton black holes in the de sitter or anti–de sitter universe”, Physical Review D—Particles, Fields, Gravitation, and Cosmology 70, 124019 (2004).
[58] H. Von Koch, “On a continuous curve without tangents constructive from elementary geometry”, in Classics on fractals, CRC Press, 24, 2019.
[59] W. Sierpinski, “A curve of which every point is a ramification point”, Comptes Rendus Hedomadaires Des Seances De L Academie Des Sciences 160, 302 (1915).
[60] K. Menger, “General spaces and cartesian spaces”, in Classics on Fractals, CRC Press, 102, 2019.
[61] J. D. Barrow, “The area of a rough black hole”, Physics Letters B 808, 135643 (2020).
[62] R. Banerjee and B. R. Majhi, “Quantum tunneling beyond semiclassical approximation”, Journal of High Energy Physics 2008, 095 (2008).
[63] S. Capozziello and M. Shokri, “Barrow entropies in black hole thermodynamics”, The European Physical Journal C 85, 200 (2025).