[1] G. Kaniadakis, A. Lavagno and P. Quarati, “Kinetic model for q deformed bosons and fermions”, Phys. Lett. A 227, (1997) doi:10.1016/S0375-9601(97)00068-6 [arXiv:hepth/9701114 [hep-th]].
[2] G. Kaniadakis, P. Quarati and A. M. Scarfone, “Kinetical foundations of nonconventional statistics”, Physica 305, 76 (2002) doi:10.1016/S0378-4371(01)00643-4 [arXiv:cond-mat/0110066 [cond-mat.stat-mech]].
[3] G. Kaniadakis, M. Lissia and A. M. Scarfone, “Deformed logarithms and entropies”, Physica A 340, 41 (2004) doi:10.1016/j.physa.2004.03.075 [arXiv:cond-mat/0402418 [cond-mat]].
[4] G. Kaniadakis, “Relativistic Roots of κ-Entropy”, Entropy 26(5), 406 (2024) doi:10.3390/e26050406 [arXiv:2405.07678 [cond-mat.stat-mech]].
[5] S. Nojiri, S. D. Odintsov and V. Faraoni, “From nonextensive statistics and black hole entropy to the holographic dark universe”, Phys. Rev. D 105(4), 044042 (2022) doi:10.1103/PhysRevD.105.044042 [arXiv:2201.02424 [gr-qc]].
[6] S. Nojiri, S. D. Odintsov and T. Paul, “Early and late universe holographic cosmology from a new generalized entropy”, Phys. Lett. B 831, 137189 (2022) doi:10.1016/j.physletb.2022.137189
[7] S. Nojiri, S. D. Odintsov and T. Paul, “Microscopic interpretation of generalized entropy”, Phys. Lett. B 847, 138321 (2023) doi:10.1016/j.physletb.2023.138321 [arXiv:2311.03848 [gr-qc]].
[8] S. Nojiri and S. D. Odintsov, “Micro-canonical and canonical description for generalised entropy”, Phys. Lett. B 845, 138130 (2023) doi:10.1016/j.physletb.2023.138130 [arXiv:2304.09014 [gr-qc]].
[9] G. G. Luciano, “Kaniadakis entropy in extreme gravitational and cosmological environments: a review on the state-of-the-art and future prospects”, Eur. Phys. J. B 97(6), 80 (2024) doi:10.1140/epjb/s10051-024-00730-3 [arXiv:2406.11373 [astro-ph.CO]].
[10] G. V. Ambrósio, M. S. Andrade, P. R. F. Alves, C. N. Costa, J. A. Neto and R. Thibes, “Exploring modified Kaniadakis entropy: MOND theory and the Bekenstein bound conjecture”, [arXiv:2405.14799 [gr-qc]].
[11] M. Yarahmadi and A. Salehi, “Using the Kaniadakis horizon entropy in the presence of neutrinos to alleviate the Hubble and S8 tensions”, Eur. Phys. J. C 84(4), 443 (2024) doi:10.1140/epjc/s10052-024-12805-7 [arXiv:2501.07860 [astro-ph.CO]].
[12] J. Lehmann, “A Note on and Generalization of ”Exploring Modified Kaniadakis Entropy: MOND Theory and the Bekenstein Bound Conjecture”, [arXiv:2406.02367 [grqc]].
[13] F. F. Santos, B. G. da Costa and I. S. Gomez, “Studies of transport coeffcients in charged AdS4 black holes on κ-deformed space”, doi:10.22128/JHAP.2022.608.1035 [arXiv:2211.13783 [hep-th]].
[14] F. F. Santos and H. Boschi-Filho, “Black branes in asymptotically Lifshitz spacetimes with arbitrary exponents in κ-Horndeski gravity”, Phys. Rev. D 109, no.6, 064035 (2024) doi:10.1103/PhysRevD.109.064035 [arXiv:2005.14154 [hep-th]].
[15] S. Ryu and T. Takayanagi, “Holographic derivation of entanglement entropy from AdS/CFT”, Phys. Rev. Lett. 96, 181602 (2006) [arXiv:hep-th/0603001 [hep-th]].
[16] F. F. Santos, B. Pourhassan, E. N. Saridakis, O. Sokoliuk, A. Baransky and E. O. Kahya, “Holographic boundary conformal field theory within Horndeski gravity”, JHEP 12, 217 (2025) doi:10.1007/JHEP12(2024)217 [arXiv:2410.18781 [hep-th]].
[17] F. F. Dos Santos, “Entanglement entropy in Horndeski gravity”, JHAP 3(1), 1 (2022) [arXiv:2201.02500 [hep-th]].
[18] E. Caceres, R. Mohan and P. H. Nguyen, “On holographic entanglement entropy of Horndeski black holes”, JHEP 10, 145 (2017) doi:10.1007/JHEP10(2017)145 [arXiv:1707.06322 [hep-th]].
[19] F. F. Santos, E. F. Capossoli and H. Boschi-Filho, “AdS/BCFT correspondence and BTZ black hole thermodynamics within Horndeski gravity”, Phys. Rev. D 104(6), 066014 (2021) [arXiv:2105.03802 [hep-th]].
[20] F. F. Santos, M. Bravo-Gaete, M. M. Ferreira and R. Casana, “Magnetized AdS/BCFT Correspondence in Horndeski Gravity”, Fortsch. Phys. 72(7-8), 2400088 (2024) doi:10.1002/prop.202400088 [arXiv:2310.17092 [hep-th]].
[21] F. F. Santos and H. Boschi-Filho, “Geometric Josephson junction”, [arXiv:2407.10008 [hep-th]].
[22] T. Takayanagi, “Holographic Dual of BCFT”, Phys. Rev. Lett. 107, 101602 (2011), [arXiv:1105.5165 [hep-th]].
[23] M. Fujita, T. Takayanagi and E. Tonni, “Aspects of AdS/BCFT”, JHEP 1111, 043 (2011), [arXiv:1108.5152 [hep-th]].
[24] H. Kanda, M. Sato, Y. k. Suzuki, T. Takayanagi and Z. Wei, “AdS/BCFT with branelocalized scalar field”, JHEP 03, 105 (2023) [arXiv:2302.03895 [hep-th]].
[25] J. M. Maldacena, “The Large N limit of superconformal field theories and supergravity”, Int. J. Theor. Phys. 38, 1113 (1999) [Adv. Theor. Math. Phys. 2, 231 (1998)] [hepth/9711200].
[26] E. Witten, “Anti-de Sitter space and holography”, Adv. Theor. Math. Phys. 2, 253 (1998) [arXiv:hep-th/9802150 [hep-th]].
[27] H. Farahani, J. Maldacena, L. M. Krauss, S. Upadhyay, S. Mamedov, L. G. Wang, J. Zhang, S. E. San, S. Masood and S. S. Wani, et al. “Proceedings of the 3rd International Conference on Holography and its Applications (ICHA3 2024)”, doi:10.22128/jhap.2024.003.0012
[28] H. Geng, S. Lüst, R. K. Mishra and D. Wakeham, “Holographic BCFTs and Communicating Black Holes”, jhep 08, 003 (2021) [arXiv:2104.07039 [hep-th]].
[29] H. Geng, “Replica Wormholes and Entanglement Islands in the Karch-Randall Braneworld”, [arXiv:2405.14872 [hep-th]].
[30] H. Geng, L. Randall and E. Swanson, “BCFT in a black hole background: an analytical holographic model”, JHEP 12, 056 (2022), [arXiv:2209.02074 [hep-th]].
[31] H. Geng, A. Karch, C. Perez-Pardavila, S. Raju, L. Randall, M. Riojas and S. Shashi, “Information Transfer with a Gravitating Bath”, SciPost Phys. 10(5), 103 (2021) [arXiv:2012.04671 [hep-th]].
[32] A. Karch and L. Randall, “Locally localized gravity”, JHEP 05, 008 (2001) [arXiv:hepth/0011156 [hep-th]].
[33] O. DeWolfe, D. Z. Freedman and H. Ooguri, “Holography and defect conformal field theories”, Phys. Rev. D 66, 025009 (2002) [arXiv:hep-th/0111135 [hep-th]].
[34] F. F. Santos, B. Pourhassan and E. N. Saridakis, “de Sitter Versus Antide Sitter in Horndeski-Like Gravity”, Fortsch. Phys. 72(3), 2300228 (2024) doi:10.1002/prop.202300228 [arXiv:2305.05794 [hep-th]].
[35] F. A. Brito and F. F. Santos, “Braneworlds in Horndeski gravity”, Eur. Phys. J. Plus 137(9), 1051 (2022) [arXiv:1810.08196 [hep-th]].
[36] T. Hartman and J. Maldacena, “Time Evolution of Entanglement Entropy from Black Hole Interiors”, JHEP 05, 014 (2013) [arXiv:1303.1080 [hep-th]].
[37] J. F. de Sousa and D. P. Pires, “Generalized Entropic Quantum Speed Limits”, [arXiv:2501.11049 [quant-ph]].
[38] G. Kaniadakis, “Non-linear kinetics underlying generalized statistics”, Physica A 296, 405 (2001) [arXiv:cond-mat/0103467].
[39] A. M. Scarfone, “On the κ-Deformed Cyclic Functions and the Generalized Fourier Series in the Framework of the kappa-Algebra”, Entropy 17, 2812 (2015).
[40] V. E. Hubeny, M. Rangamani and T. Takayanagi, “A Covariant holographic entanglement entropy proposal”, JHEP 07, 062 (2007) doi:10.1088/1126-6708/2007/07/062 [arXiv:0705.0016 [hep-th]].
[41] T. Nishioka, S. Ryu and T. Takayanagi, “Holographic Entanglement Entropy: An Overview”, J. Phys. A 42, 504008 (2009) doi:10.1088/1751-8113/42/50/504008 [arXiv:0905.0932 [hep-th]].
[42] V. E. Hubeny, “Extremal surfaces as bulk probes in AdS/CFT”, JHEP 07, 093 (2012) doi:10.1007/JHEP07(2012)093 [arXiv:1203.1044 [hep-th]].
[43] T. Faulkner, M. Guica, T. Hartman, R. C. Myers and M. Van Raamsdonk, “Gravitation from Entanglement in Holographic CFTs”, JHEP 03, 051 (2014) doi:10.1007/JHEP03(2014)051 [arXiv:1312.7856 [hep-th]].
[44] J. Maldacena, S. H. Shenker and D. Stanford, “A bound on chaos”, JHEP 08, 106 (2016) doi:10.1007/JHEP08(2016)106 [arXiv:1503.01409 [hep-th]].