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Abstract. In this work, we explore the entanglement entropy equipped with the
κ-algebra. This entanglement entropy is computed through the geometric setup as
performed by Hartman-Maldacena, which, in their prescription, finds that the entropy
grows linearly in time. In our case, we show that the κ-algebra embedding provides a
richer scenario where the third-order corrections in time added from κ-algebra to en-
tanglement entropy imply that the growth of quantum correlations between subsystems
is more intricate than a simple linear increase into the dynamics of black hole thermal-
ization and quantum information flow. In the context of holography, such corrections
suggest that the thermalization process is not instantaneous but involves higher-order
interactions between subsystems.
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1 Introduction
The Kaniadakis algebra, or κ-algebra, is a generalization of classical statistical mechanics
that introduces a deformation parameter κ, allowing for the description of systems with
non-extensive or relativistic properties [1–4]. This framework has been applied in various
fields, including cosmology, black hole thermodynamics, and quantum mechanics [5–12].
Entanglement entropy, on the other hand, quantifies the degree of quantum entanglement
between subsystems and plays a crucial role in understanding quantum field theory, black
hole physics, and holography [10].

Recent advancements in theoretical physics indicate that the Kaniadakis entropy, rooted
in the framework of κ-statistics, offers promising insights into the nature of entanglement
entropy, particularly in systems exhibiting non-extensive or relativistic dynamics [10,13,
14]. This perspective aligns with the computation of entanglement entropy through the
AdS/CFT correspondence [15–18], a powerful connection between gravitational theories in
anti-de Sitter (AdS) spaces with conformal field theories (CFTs) on their boundaries. A
notable extension of this framework is the AdS/BCFT correspondence, where the boundary
conformal field theory (BCFT) is defined on a manifold with a physical boundary [16,19–24].
In this scenario, the bulk spacetime is characterized by an asymptotically AdS geometry that
terminates on an end-of-the-world (EoW) brane [25–27]. The EoW brane plays a crucial
role in encoding the boundary conditions of the BCFT, thereby enriching our understanding
of the interplay between bulk and boundary physics.

In the AdS/CFT framework, the computation of entanglement entropy is elegantly
achieved through the Ryu-Takayanagi (RT) prescription [15] or its dynamic extension, the
Hubeny-Rangamani-Takayanagi (HRT) formula [16–18]. To illustrate the RT prescription,
consider a static bulk spacetime M foliated as M = ΠtNt ×Rt, with its boundary defined
as ∂M = Πt∂Nt ×Rt. By partitioning the boundary ∂Nt into two complementary regions,
A and B, we can define an entangling surface ∂A that separates these regions. The Holo-
graphic Entanglement Entropy (HEE) associated with this surface is then determined by
the minimal area of a bulk surface anchored to ∂A, as prescribed by the RT formula. This
approach provides a profound connection between quantum entanglement in the boundary
theory and the geometry of the bulk spacetime. The Holographic Entanglement Entropy
(HEE) across this entangling surface ∂A is given by

S(A) =
A(γA)

4G
. (1.1)

Here γA is the codimensional-2 minimal surface in the bulk; It ends on A: ∂γAγA|∂M = ∂A.
It is homologous to A: ∃R ⊂ M : ∂R = γA∪A with R smooth, interpolating codimension-1
surface (homology constraint) [15].

The conjecture presented in Eq. (1.1)-[15] establishes a profound connection between the
entanglement entropy of a region A in a conformal field theory (CFT) with a holographic dual
and the geometry of a minimal surface in the bulk spacetime. Specifically, the entanglement
entropy (S) is determined by the area of a minimal surface (A) that extends from the
conformal boundary [16,28–31], where A resides, into the bulk volume, as illustrated in
Fig. 1. This reduces the problem of minimizing a classical area functional, making it a
purely geometric computation. In the context of boundary conformal field theory (BCFT),
the minimal surface is further constrained to intersect the end-of-the-world (EoW) brane,
with the entanglement entropy of A being proportional to the area of this surface. This
framework highlights the deep interplay between quantum entanglement in the boundary
theory and the geometry of the bulk spacetime.
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Figure 1: Shcematic Ryu-Takayanagi formula. The Holographic Entanglement Entropy
(HEE) of the subregion A on the boundary CFT can be computed through the area of the
minimal surface γA extending into the bulk.

Recently, new ways to investigate the black hole information have emerged, for example,
entanglement islands and the Page curve [28,29,29–31] within the framework on a Karch-
Randall braneworld background [32–35]. By analytically examining the holographic bound-
ary conformal field theory, the Horndeski parameters introduce significant deviations in the
Page curve compared to predictions from standard general relativity [16]. These devia-
tions arise from the nontrivial geometric effects induced by the Horndeski scalar field, which
fundamentally alter the bulk spacetime structure. Notably, these findings reveal that the
geometry far from the AdS limit plays a more prominent role than previously recognized,
underscoring the impact of Horndeski gravity on the distribution of quantum information
in holographic models [16].

In this work, we propose an investigation using the κ-algebra to probe the effects aris-
ing from the geometry modified by this algebra on the Hartman-Maldacena entanglement
entropy [36]. In their study, Hartman and Maldacena delve into the intricate and com-
plex nature of black holes, focusing on the significant challenges involved in establishing a
theoretical connection between the black hole’s interior and its exterior. The interior of a
black hole, often referred to as the ”future region,” is a domain where the laws of physics
begin to break down as we understand them due to the extreme gravitational forces and
spacetime curvature. This region is hidden behind the event horizon, a boundary beyond
which no information or matter can escape to the outside universe. On the other hand,
the exterior of the black hole represents the observable universe, where physical processes
can be studied and measured. The difficulty in connecting these two regions arises from
the fundamental limitations imposed by general relativity and quantum mechanics, as well
as the information paradox, which questions how information about matter falling into a
black hole can be preserved or retrieved. Hartman and Maldacena’s work sheds light on
these challenges, offering insights into the interplay between gravity, quantum theory, and
the nature of spacetime itself. Furthermore, extremal surfaces do not penetrate the event
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horizon in the static case. However, for a time-dependent system, we can probe its interior.
Using black brane geometry, we will probe the impact of κ-algebra on the evolution of entan-
glement entropy. For this, we will consider that the functions for the geometry embedded as
a codimension sub-manifold of a Minkowski space are generalized κ-functions. Thus, in the
framework of Kaniadakis [1–4], the mean idea is the analysis of how κ-deformed statistics
modifies the traditional understanding of entropy. With this, we open new avenues with
potential implications for entanglement entropy in relativistic and non-extensive systems
[37].

2 Review of κ− deformed Theory

The κ-deformed formalism is based on generalizing the standard exponential and logarithm
functions. The κ-exponential is defined by

expκ u ≡
(
κu+

√
1 + κ2u2

)1/κ

= exp

(
1

κ
Arcsinh(κu)

)
. (2.1)

The κ-logarithm is

logκ u ≡ uκ − u−κ

2κ
=

1

κ
sinh(κ log u) . (2.2)

The κ-exponential and κ-logarithm functions satisfy the following fundamental algebraic
properties

expκ(a) · expκ(b) = expκ(a
κ
⊕ b),

expκ(a)

expκ(b)
= expκ(a

κ
⊖ b),

logκ(ab) = logκ(a)
κ
⊕ logκ(b), logκ

(a
b

)
= logκ(a)

κ
⊖ logκ(b).

Here, the κ-deformed addition operator, denoted by
κ
⊕ and subtraction operation,

κ
⊖ respec-

tively, are

a
κ
⊕ b = a

√
1 + κ2b2 + b

√
1 + κ2a2, a

κ
⊖ b = a

√
1 + κ2b2 − b

√
1 + κ2a2 . (2.3)

These identities establish the fundamental structural relationships governing the κ-exponential
and κ-logarithm functions within the framework of κ-deformed algebra. Such modifications
to standard mathematical operations arise naturally in generalized statistical and thermo-
dynamical formalisms [38,39]. Using the definitions of the κ-deformed exponential function
as in Eq. (2.1) and the κ-deformed logarithm in Eq. (2.2), by expanding, one can observe in
the limit κ → 0 results in standard exponential function as

expκ u = eu − 1

6
κ2

(
euu3

)
+

1

360
κ4euu5(5u+ 27) +O

(
κ5

)
,

logκ u = log(u) +
1

6
κ2 log3(u) +

1

120
κ4 log5(u) +O

(
κ5

)
.
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Now, using this, we can easily compute the trigonometric and hyperbolic functions as

sinκ x =
(expκ (i x))− (expκ (−i x))

2i
= sin(x) +

1

6
κ2x3 cos(x) +O

(
κ3

)
,

cosκ x =
(expκ (i x)) + (expκ (−i x))

2
= cos(x)− 1

6
κ2 x3 sin(x) +O

(
κ3

)
,

sinhκ x =
(expκ (x))− (expκ (−x))

2
= sinh(x)− 1

6
κ2 x3 cosh(x) +O

(
κ3

)
,

coshκ x =
(expκ (x)) + (expκ (−x))

2
= cosh(x)− 1

6
κ2 x3 sinh(x) +O

(
κ3

)
.

Again, one returns to undeformed theory in the limit κ → 0.

κ-deformed Calculus

A κ-deformed calculus can be naturally introduced such that it reduces to conventional
calculus in the limit κ → 0. The κ-derivative is defined as

Dκf(x) =
df(x)

dxκ
= lim

y→x

f(x)− f(y)

x
κ
⊖ y

, (2.4)

where the κ-differential dxκ is given by

dxκ = lim
y→x

(x
κ
⊖ y) = lim

y→x

x2 − y2

x
κ
⊕ y

=
dx√

1 + κ2x2
. (2.5)

Integrating this expression yields the function

xκ =
1

κ
ln
(√

1 + κ2x2 + κx
)
=

1

κ
arcsinh(κx) , (2.6)

and easy to see it satisfies the relation

xκ + yκ = (x
κ
⊕ y)κ . (2.7)

Furthermore, the κ-derivative can be rewritten in the form

df(x)

dxκ
=

√
1 + κ2x2

df(x)

dx
. (2.8)

The κ-deformed exponential and hyperbolic functions satisfy the differential relations

d

dxκ
expκ(x) = expκ(x),

d

dxκ
sinhκ(x) = coshκ(x). (2.9)

Finally, using the definition of the κ-derivative, the corresponding κ-deformed integral is
defined as ∫

f(x) dxκ =

∫
f(x)√
1 + κ2x2

dx. (2.10)

This formulation ensures that the fundamental principles of integral calculus remain valid in
the κ-deformed framework. Specifically, the linearity, additivity, and fundamental theorem
of calculus continue to hold, with the κ-integral acting as the inverse operation of the κ-
derivative. The deformation parameter κ introduces a non-trivial weighting factor 1√

1+κ2x2
,

which modifies the measure of integration while preserving the core structure of conventional
integral calculus.
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3 Hartman-Maldacena entanglement entropy
In this section, we present the general spatial embedding formalism to compute the Hartman-
Maldacena (HM) entanglement entropy [36]. Considering the black-string insight

ds2AdS4
=

1

r2 sin2κ(u)

(
−f(r)dt2 + dy2 + r2du2 +

dr2

f(r)

)
. (3.1)

The interior region corresponds to t → tint.− iβ
2 Fig 2 and r et is finite as we cross the horizon,

and tint is real. The coordinate tint. is spacelike in the interior. For the metric (3.1), because

Boundary

Singularity

Figure 2: The Penrose diagram for the maximally extended black branes under consider-
ation is presented, with the spatial coordinates along the brane suppressed for simplicity.
The diagram features two distinct exterior regions, denoted as Exterior 1 (right side) and
Exterior 2 (Left side), each associated with a boundary where the corresponding dual field
theories reside. Additionally, the diagram includes two interior regions: one in the future,
labeled Interior 1, and another in the past, labeled Interior 2. This configuration can be
constructed from an Euclidean solution by employing a method of analytic continuation,
specifically by joining the solution across a moment of time-reflection symmetry.

a dual field theory is a CFT3 on an AdS3 black hole background with conformal boundary
conditions at r = 0, we obtain

ds2AdS3
=

1

r2

(
−f(r)dt2 + dy2 +

dr2

f(r)

)
. (3.2)

To simplify our results, we rewrite f(r) as

f(r) = 1− r2

r2h
. (3.3)

Entanglement entropy serves as a fundamental tool in the study of holography, where it
is computed using the area of an extremal surface in the AdS spacetime that terminates
on the boundary [15,40,41]. In static configurations, these extremal surfaces remain con-
fined outside the event horizon [42]. However, in dynamical, time-dependent scenarios, they
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can extend beyond the horizon, providing a unique means to probe the interior structure
of the spacetime. This distinction underscores the critical role of time dependence in ac-
cessing deeper insights into the geometry and physics of black holes. For this, we consider
the following geometry embedded as a codimension-one sub-manifold of a four-dimensional
Minkowski space:

ds2 = ηabdX
adXb; ηab = diag(1, 1,−1,−1), (3.4)

where the embedding equation is XaX
a = 1. with a re-parameterization like sin−1(u) =

cosh(ρ)

ds2AdS3
=

coshκ(ρ)

r2

(
−f(r)dt2 +

dr2

f(r)

)
+ dρ2. (3.5)

By adopting the following parameterization in the kappa−deformation for the embedding
equation

X0 =
2rh − r

r
coshκ(ρ),

X1 =
2rh
r

√(
1− r2

r2h

)
sinκ

(
2π t

β

)
coshκ(ρ),

X2 =
2rh
r

√(
1− r2

r2h

)
cosκ

(
2π t

β

)
coshκ(ρ),

X3 = sinhκ(ρ) , (3.6)

where the inverse Hawking temperature is given by β = 4π rh = 1/T , we can efficiently
compute the Hartman-Maldacena surface area without explicitly solving the geodesic dif-
ferential equation associated with the minimal surface. Within this embedding framework,
the geodesic length l can be determined using the coordinates (X0, X1, X2, X3) and their
corresponding primed counterparts (X ′

0, X
′
1, X

′
2, X

′
3) via the relation

l = cosh−1(X0X
′
0 +X1X

′
1 −X2X

′
2 −X3X

′
3) . (3.7)

Unlike the island surface, which extends from the bipartition to the KR brane, the Hartman-
Maldacena (HM) surface passes over an Einstein-Rosen bridge before terminating at the right
bipartition within the right-side thermofield double [36]. The left and right bipartitions of the
(u, ρ) coordinate system are placed at (u, ρ) = (uL, 1) and (u, ρ) = (uR, 1), respectively [16].
To use the embedding given in equation (3.6), we add a regularization parameter ρϵ, which
we finally take to infinity to ensure that the bipartitions dwell on the asymptotic boundary.
The time coordinate transformation for the right bipartition is as follows: t → −t + iβ2 .
This corresponds to reversing the time-like Killing vector field on the opposite side of the
black hole. The area of the Hartman-Maldacena surface may now be easily computed using
equation (3.6) as

AHM = cosh−1(XL
0 X

R
0 +XL

1 X
R
1 −XL

2 X
R
2 −XL

3 X
R
3 ) = cosh−1(Z0 + κ2Z1)

= cosh−1 [Z0] + κ2 Z1√
Z2
0 − 1

, (3.8)
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where in the terms of ∆L = rh − rL, ∆R = rh − rR

Z0 =
(∆L + rh)(∆R + rh) + 4rhω

√
∆L∆R cosh

(
2πt
β

)
(rh −∆L)(rh −∆R)

cosh ρ− sinh2 ρ

Z1 =
rh

(
β3ρ3(∆L +∆R) sinh(2ρ) + 2ω

√
∆L∆R

)
3β3(rh −∆L)(rh −∆R)

{
− β3ρ3 sinh(2ρ) cosh

(
2πt

β

)

+(16− 24i)π3t3 cosh2(ρ) sinh

(
2πt

β

)}
.

By employing hyperbolic trigonometric identities and using Eq.(3.8), we derive the following
expression

SHM =
AHM

4G
=

c

6
log

[
rh

rLrR

(
∆L +∆R + 2ω(ρϵ)

√
∆L∆R cosh

(
4πt

β

))]
+

c

3
ρϵ + Sκ

HM ,

with

Sκ
HM =

c

6
κ2 Z1√

Z2
0 − 1

, (3.9)

where c = 3
2G represents the central charge-like quantity [16,17,30], and it is easy to verify

Z1

Z0

=
e2ρrh

(
−β3ρ3(∆L + ∆R) + 2rhω

√
∆L∆R

(
β3ρ3 cosh

(
2πt
β

)
− (8 − 12i)π3t3 sinh

(
2πt
β

)))
3β3

(
2(rh − ∆L)(rh − ∆R) + e2ρrh

(
∆L + ∆R − 2ω

√
∆L∆R cosh

(
2πt
β

))) .

It is evident that in the limit κ → 0, the result seamlessly recovers the corresponding
expression from [16,30]. In the next section, we study the evolution of the entanglement
entropy. We can see that the corrections in κ2 for equation (3.9) provide thermalization
process is non-instantaneous, which involves higher-order interactions between subsystems.

4 The growth of the entanglement entropy
In the prescription of [16,28,29,31,36], the black hole corresponds to the holographic duals
of thermal field theories. In our work, we set the temperature to β = 1/T .

The extended Penrose diagram includes a second exterior region Fig 2, mirroring the
first, which plays a crucial role in the dual description of the full spacetime. This spacetime
is holographically dual to the thermofield double state, as described in prior work [36]. The
duality involves two distinct boundaries, each corresponding to a separate copy of the field
theory. These two field theory copies are entangled in a thermofield double state, which can
be expressed as a superposition over energy eigenstates. Notably, when the field theories
are defined on a non-compact spatial manifold, the index n in the entangled state becomes
continuous, reflecting the unbounded nature of the spectrum.

|Ψ⟩ =
∑
n

|En⟩1|En⟩2e−
β
2 En . (4.1)

We now turn our attention to the entanglement entropy of a specific region, denoted as ”A”.
This region is defined as comprising one-half of the spatial domain in each of the two copies
of the thermofield double state [16,28,29,31]. To analyze this, we partition each copy into two
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equal halves at a fixed time tb, which is synchronized across both boundaries. Importantly,
we consider the scenario where time evolves forward on both copies of the field theory,
introducing explicit time dependence into the system. While evolving time forward on one
copy and backward on the other is a symmetry of the setup, our choice to evolve time forward
on both sides breaks this symmetry, thereby generating a non-trivial time dependence in
the entanglement entropy. This time dependence is reflected in the modification of the
thermofield double state, where the factor e−

β En
2 is replaced by e−

β En
2 −2iEntb , capturing

the dynamical evolution of the system [36].
The proposed holographic prescription for calculating entanglement entropy, as outlined

in [15,16,40], involves identifying an extremal codimension-two surface within the bulk space-
time. This surface must be anchored to the boundaries of the region under consideration
on the conformal boundary. While this formula remains a conjecture, it has been rigor-
ously tested in specific scenarios and has successfully passed numerous consistency checks,
as discussed in [41]. Despite its unproven status, the conjecture has become a cornerstone
of holographic entanglement entropy studies, offering profound insights into the interplay
between geometry and quantum information.

Figure 3: The red surface responsible for computing the entanglement entropy exhibits a
notable behavior for large values of tb,L/R. In this regime, the surface closely approaches
a critical spacelike surface located deep within the bulk spacetime. This critical surface
plays a pivotal role in the dynamics of the system, as its proximity to the extremal surface
leads to the linear dependence of the entanglement entropy on tb. The linear growth reflects
the accumulation of quantum correlations over time, a hallmark feature of systems with
holographic duals undergoing dynamical evolution.

For a finite-temperature conformal field theory (CFT), we consider the region (A) to be
the half-line ( y > 0), both in the CFT and its thermofield double. In the Euclidean signa-
ture, operator insertions in the CFT are located at ( Im r = 0), while those in the thermofield
double are positioned at (Im r = iβ/2), reflecting the thermal periodicity. At (t = 0), the
(n)-th power of the reduced density matrix, (ρnA), can be represented as a Euclidean path
integral on an (n)-sheeted cylinder with periodicity (r ∼ r+ iβ). This construction involves
the insertion of twist fields at the branch points, whose two-point correlation function en-
codes the entanglement structure. As we demonstrate, the entanglement entropy in this
setup is derived from the analytic continuation of these twist field correlators in the replica
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limit (n → 1). Thus for

SHM =
c

6
log

[
2rh∆r

r2

(
1 +

√
∆L ∆R cosh

(
4π t

β

))]
+

c

3
ρϵ. (4.2)

we have that SHM for t ≳ β, the entanglement entropy grows linearly in time (SHM → c
6 t)

for κ = 0. On the other hand, the region where the solution crosses the horizon and goes
near the boundary has a shape that depends on the details of the geometry Fig 3. However,
for large t, we have that

Sκ
HM =

c

6
κ2 Z1√

Z2
0 − 1

→ c

6

t3

β3
, (4.3)

which increases the information area; a large fraction of CFT microstates correspond to
black holes with a smooth interior for which the construction is correct and applicable. This
mapping between the black-hole interior and the boundary is state-dependent, then this
neatly resolves several paradoxes about large black holes in AdS/CFT. Thus, encoded in
Sκ
HM , we have a large piece lying in the interior that gives a large contribution in t3/β3 to

the area.

5 Conclusions and discussions
This work demonstrates how time dependence can be incorporated to explore the black hole
interior using the κ-algebra framework. In this work, we propose a specific prescription for
the system’s setup, which is characterized by a static geometry under time evolution. In the
standard interpretation, time flows forward in one exterior region of the Penrose diagram
and backward in the other. However, in our approach, we deviate from this convention by
evolving time forward in both exterior regions. This modification introduces explicit time
dependence into the system, allowing us to construct a simplified model for investigating
thermalization in a strongly coupled conformal field theory (CFT) dual, as discussed in Refs.
[36,41,42]. This approach is motivated by the observation that, while the two-sided configu-
ration may initially seem artificial, it provides valuable insights into realistic thermalization
processes. Specifically, there exists a class of black hole microstates that mimic the eternal
black hole geometry outside the event horizon but do not include the second asymptotic re-
gion. These microstates correspond to time-dependent pure states in the dual CFT, which
evolve and thermalize over time. By adopting this setup, we aim to bridge the gap between
the idealized eternal black hole model and the more realistic dynamics of thermalization in
strongly coupled systems, thereby offering a clearer understanding of the interplay between
black hole physics and dual CFT dynamics.

When the entanglement entropy deviates from linear time dependence and includes third-
order corrections in time (t3/β3), it reveals deeper insights into the dynamics of black hole
thermalization and quantum information flow. In the context of holography, such correc-
tions suggest that the thermalization process is not instantaneous but involves higher-order
interactions between subsystems. These corrections could indicate the presence of sublead-
ing effects in the dual CFT, such as finite coupling corrections or deviations from perfect
thermal equilibrium [43,44]. Physically, third-order corrections to entanglement entropy
imply that the growth of quantum correlations between subsystems is more intricate than a
simple linear increase. This could reflect the influence of complex interactions in the black
hole interior, such as the scrambling of information or the interplay between different en-
ergy scales. Additionally, these corrections may provide a window into understanding the
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microscopic structure of black hole horizons and the role of quantum chaos in thermalization
processes.
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