Thermodynamic Structure of Einstein-Gauss-Bonnet Regular Black Holes Coupled with Cloud of String

Document Type : Regular article

Authors

1 Department Physics, Institute of Applied Sciences and Humanities, GLA University, Mathura 281406 Uttar Pradesh, India

2 Department of Civil Engineering, Faculty of Engineering, Marwadi University, Rajkot, Gujarat 360003, India

Abstract

We construct several black holes coupled with the nonlinear electrodynamics (NLED) known as a regular black hole, which becomes Maxwell's theory in the weak field limit. We present an exact regular black hole solution in the presence of a cloud of strings (CoS), and Einstein-Gauss-Bonnet (EGB) gravity. We study the global properties of the solutions and derive the corrected first law of thermodynamics, because the first law of thermodynamics is modified in the presence of NLED. In addition,  we have studied the thermodynamics properties associated with the EGB regular black hole solution, the thermodynamic quantities (Mass, Temperature, Entropy, Heat Capacity and Free Energy) is change in the presence of NLED, CoS, and EGB parameter.

Keywords

Main Subjects

 

Article PDF

[1] D. Lovelock, ”The Einstein tensor and its generalizations”, J. Math. Phys. 12, 498 (1971). DOI: 10.1063/1.1665613
[2] D. Lovelock, ”The four-dimensionality of space and the einstein tensor”, J. Math. Phys. 13, 874 (1972). DOI: 10.1063/1.1666069
[3] N. Deruelle and L. Farina-Busto, ”Lovelock gravitational field equations in cosmology”, Phys. Rev. D 41, 3696 (1990).
[4] D. J. Gross and E. Witten, ”Superstring modifications of Einstein’s equations”, Nucl. Phys. B 277, 1 (1986). DOI: doi.org/10.1016/0550-3213(86)90429-3
[5] D.G. Boulware and S. Deser, ”String-Generated Gravity Models”, Phys. Rev. Lett. 55, 2656 (1985). DOI: doi.org/10.1103/PhysRevLett.55.2656
[6] F.R. Tangherlini, ”Schwarzschild field inn dimensions and the dimensionality of space problem”, Nouvo Cim. 27, 636 (1963).
[7] S. Mignemi and N. R. Stewart, ”Charged black holes in effective string theory”, Phys. Rev. D 47, 5259 (1993). DOI: doi.org/10.1103/PhysRevD.47.5259
[8] T. H. Lee, D. Baboolal and S. G. Ghosh, ”Lovelock black holes in a string cloud background”, Eur. Phys. J. C 75, 297 (2015). DOI: doi.org/10.1140/epjc/s10052-015- 3515-5
[9] E. Herscovich and M. G. Richarte, ”Black holes in Einstein–Gauss–Bonnet gravity with a string cloud background”, Phys. Lett. B 689, 192 (2010). DOI: doi.org/10.1016/j.physletb.2010.04.065
[10] S. G. Ghosh, U. Papnoi and S. D. Maharaj, ”Cloud of strings in third order Lovelock gravity”, Phys. Rev. D 90, 044068 (2014). DOI: doi.org/10.1103/PhysRevD.90.044068
[11] S. G. Ghosh and S. D. Maharaj, ”Cloud of strings for radiating black holes in Lovelock gravity”, Phys. Rev. D 89, 084027 (2014). DOI: doi.org/10.1103/PhysRevD.89.084027
[12] J. P. Morais Graça, G. I. Salako and V. B. Bezerra, ”Thermodynamics and remnants of Kiselev black holes in Rainbow gravity”, Int. J. Mod. Phys. D 26, 1750113 (2017). DOI: doi.org/10.1007/s10714-021-02897-x
[13] S. G. Ghosh, D. V. Singh and S. D. Maharaj, ”Regular black holes in Einstein-Gauss-Bonnet gravity”, Phys. Rev. D 97, 104050 (2018). DOI: doi.org/10.1103/PhysRevD.97.104050
[14] S. H. Hendi, S. Panahiyan and B. Eslam Panah, ”Charged Dilatonic Black Holes in Gravity’s Rainbow”, Eur. Phys. J. C 75, 296 (2015). DOI: doi.org/10.1140/epjc/s10052- 016-4119-4
[15] S. Hyun and C. H. Nam, ”Charged AdS black holes in Gauss–Bonnet gravity and nonlinear electrodynamics”, Eur. Phys. J. C 79, 737 (2019).
[16] S. G. Ghosh, ”A nonsingular rotating black hole”, Eur. Phys. J. C 75, no. 11, 532 (2015). DOI: doi.org/10.48550/arXiv.1408.5668
[17] Y. Zhang, Y. Zhu, L. Modesto and C. Bambi, ”Can static regular black holes form from gravitational collapse?”, Eur. Phys. J. C 75, 96 (2015). DOI: doi.org/10.1140/epjc/s10052-015-3311-2
[18] A. Borde, ”Open and closed universes, initial singularities and inflation”, Phys. Rev. D 50, 3692 (1994). DOI: doi.org/10.1103/PhysRevD.50.3692
[19] A. Borde,”Regular black holes and topology change”, Phys. Rev. D 55, 7615 (1997).
[20] DOI: doi.org/10.1103/PhysRevD.55.7615 S. G. Ghosh, U. Papnoi, and S. D. Maharaj, ”Cloud of strings in third order Lovelock gravity”, Phys. Rev. D 90, 044068 (2014). DOI: doi.org/10.1103/PhysRevD.90.044068
[21] M. Barriola, A. Vilenkin, ”Gravitational field of a global monopole”, Phys. Rev. Lett. 63, 341 (1989). DOI: doi.org/10.1103/PhysRevLett.63.341
[22] E. Ayon-Beato, A. Garcia, ”The Bardeen Model as a Nonlinear Magnetic Monopole”, Phys. Lett. B 493, 149 (2000). DOI: doi.org/10.1016/S0370-2693%2800%2901125-4
[23] E. Ayon-Beato and A. Garcia, ”Non-Singular Charged Black Hole Solution for Non-Linear Source”, Gen. Relativ. Gravit. 31, 629 (1999). DOI: doi.org/10.1023/A%3A1026640911319
[24] E. Ayon-Beato and A. Garcia, ”Four-parametric regular black hole solution”, Gen. Relativ. Gravit.37, 635 (2005). DOI: doi.org/10.1007/s10714-005-0050-y
[25] E. Ayon-Beato and A. Garcia, ”Regular black hole in general relativity coupled to nonlinear electrodynamics”, Phys. Rev. Lett. 80, 5056 (1998). DOI: doi.org/10.1103/PhysRevLett.80.5056
[26] O.B. Zaslavskii, ”Regular black holes with flux tube core”, Phys. Rev. D 80, 064034 (2009). DOI: doi.org/10.1103/PhysRevD.80.064034
[27] J. Bardeen, ”Non-singular general relativistic gravitational collapse”, in Proceedings of GR5 (Tiflis, U.S.S.R., 1968).
[28] S. Ansoldi, ”Spherical black holes with regular center: A Review of existing models including a recent realization with Gaussian sources”, DOI: doi.org/10.48550/arXiv.0802.0330
[29] J. P. S. Lemos and V.T. Zanchin, ”Regular black holes: Electrically charged solutions, Reissner-Nordstróm outside a de Sitter core”,Phys. Rev. D 83, 124005 (2011). DOI: doi.org/10.1103/PhysRevD.83.124005
[30] L. Xiang, Y. Ling and Y. G. Shen, ”Singularities and the Finale of Black Hole Evaporation”, Int. J. Mod. Phys. D 22, 1342016 (2013). DOI: doi.org/10.1142/S0218271813420169
[31] H. Culetu, ”On a regular charged black hole with a nonlinear electric source”, Int. J. Theor. Phys. 54, 2855 (2015). DOI: doi.org/10.1007/s10773-015-2521-6
[32] L. Balart and E. C. Vagenas, ”Regular black hole metrics and the weak energy condition”, Phys. Lett. B 730, 14 (2014). DOI: doi.org/10.1016/j.physletb.2014.01.024
[33] I. G. Dymnikova,”Thermodynamics of horizons in a globally regular spherically symmetric spacetime”, Int. J. of Mod. Phys. D, 5 529 (1996); Phys. Lett. B 685, 12 (2010); Gen. Rel. Grav. 24, 235 (1992). DOI: doi.org/10.1134/S0202289312030048
[34] H. K. Sudhanshu, D. V. Singh, S. Upadhyay, Y. Myrzakulov and K. Myrzakulov, ”Thermodynamics of a newly constructed black hole coupled with nonlinear electrodynamics and cloud of strings”, Phys. Dark Univ. 46 (2024), 101648. DOI: doi.org/10.1016/j.dark.2024.101648
[35] A. Kumar, D. V. Singh and S. Upadhyay, ”Impact of Perfect Fluid Dark Matter on the Thermodynamics of AdS Ayón-Beato-GarcÍa Black Holes”, JHAP 4(4), 85 (2024). DOI: doi.org/10.22128/jhap.2024.884.1096
[36] D. V. Singh, S. G. Ghosh and S. D. Maharaj, ”Exact nonsingular black holes and thermodynamics”, Nucl. Phys. B 981, 115854 (2022). DOI: doi.org/10.1016/j.nuclphysb.2022.115854
[37] A. Kumar, D. V. Singh, Y. Myrzakulov, G. Yergaliyeva and S. Upadhyay, ”Exact solution of Bardeen black hole in Einstein–Gauss–Bonnet gravity”, Eur. Phys. J. Plus 138(12), 1071 (2023). DOI: 10.1140/epjp/s13360-023-04718-3
[38] P. Paul, S. Upadhyay and D. V. Singh, ”Charged AdS black holes in 4D Einstein– Gauss–Bonnet massive gravity”, Eur. Phys. J. Plus 138(6), 566 (2023). DOI: 10.1140/epjp/s13360-023-04176-x
[39] B. Pourhassan, M. Dehghani, S. Upadhyay, I. Sakalli and D. V. Singh, ”Exponential corrected thermodynamics of Born–Infeld BTZ black holes in massive gravity”, Mod. Phys. Lett. A 37(33), 2250230 (2022). DOI: doi.org/10.1142/S0217732322502303
[40] S. Upadhyay and D. V. Singh, ”Black hole solution and thermal properties in 4D AdS Gauss–Bonnet massive gravity”, Eur. Phys. J. Plus 137(3), 383 (2022). DOI: 10.1140/epjp/s13360-022-02569-y
[41] R. V. Maluf and J. C. S. Neves, ”Thermodynamics of a class of regular black holes with a generalized uncertainty principle”, Phys. Rev. D 97, 104015 (2018). DOI: doi.org/10.1103/PhysRevD.97.104015
[42] Mang-Sen Ma and Ren Zhao, ”Corrected form of the first law of thermodynamics for regular black holes”, Class. Quantun Grav. 31 245014 (2014). DOI: doi.org/10.1088/0264- 9381/31/24/245014
[43] A. Kumar, D. V. Singh and S. Upadhyay, ”Ayón–Beato–García black hole coupled with a cloud of strings: Thermodynamics, shadows and quasinormal modes”, Int. J. Mod. Phys. A 39(31), 2450136 (2024). DOI: 10.1142/S0217751X24501367
[44] B. Singh, D. Veer Singh and B. Kumar Singh, ”Thermodynamics, phase structure and quasinormal modes for AdS Heyward massive black hole”,Phys. Scripta 99(2), 025305 (2024). DOI: 10.1088/1402-4896/ad1da4
[45] P. Paul, S. Upadhyay, Y. Myrzakulov, D. V. Singh and K. Myrzakulov, ”More exact thermodynamics of nonlinear charged AdS black holes in 4D critical gravity”, Nucl. Phys. B 993, 116259 (2023). DOI: doi.org/10.1016/j.nuclphysb.2023.116259
[46] D. V. Singh, A. Shukla and S. Upadhyay, ”Quasinormal modes, shadow and thermodynamics of black holes coupled with nonlinear electrodynamics and cloud of strings”, Annals Phys. 447, 169157 (2022). DOI: doi.org/10.1016/j.aop.2022.169157
[47] B. Singh, B. K. Singh and D. V. Singh, ”Thermodynamics, phase structure of Bardeen massive black hole in Gauss-Bonnet gravity”,Int. J. Geom. Meth. Mod. Phys. 20(08), 2350125 (2023). DOI: 10.1142/S0219887823501256
[48] Y. Myrzakulov, K. Myrzakulov, S. Upadhyay and D. V. Singh,”Quasinormal modes and phase structure of regular AdS Einstein–Gauss–Bonnet black holes”, Int. J. Geom. Meth. Mod. Phys. 20(07), 2350121 (2023). DOI: doi.org/10.1142/S0219887823501219
[49] D. V. Singh, V. K. Bhardwaj and S. Upadhyay, ”Thermodynamic properties, thermal image and phase transition of Einstein-Gauss-Bonnet black hole coupled with nonlinear electrodynamics”, Eur. Phys. J. Plus 137(8), 969 (2022). DOI: doi.org/10.1140/epjp/s13360-022-03208-2
[50] B. K. Vishvakarma, D. V. Singh and S. Siwach, ”Parameter estimation of the BardeenKerr black hole in cloud of strings using shadow analysis”, Phys. Scripta 99(2), 025022 (2024). DOI: doi.org/10.48550/arXiv.2310.20393
[51] B. K. Vishvakarma, D. V. Singh and S. Siwach, ”Shadows and quasinormal modes of the Bardeen black hole in cloud of strings”, Eur. Phys. J. Plus 138(6), 536 (2023). DOI:10.1140/epjp/s13360-023-04174-z
[52] D. V. Singh, S. Upadhyay, Y. Myrzakulov, K. Myrzakulov, B. Singh and M. Kumar, ”Thermodynamic behavior and phase transitions of black holes with a cloud of strings and perfect fluid dark matter”, Nucl. Phys. B 1016, 116915 (2025). DOI: doi.org/10.1016/j.nuclphysb.2025.116915
[53] J. D. Bekenstein, ”Black holes and the second law”, Lett. Nuovo Cim. 4, 737 (1972). DOI: 10.1007/BF02757029
[54] J. D. Bekenstein,”Black holes and entropy”, Phys. Rev. D 7, 2333 (1973). DOI: doi.org/10.1103/PhysRevD.7.2333
[55] S. W. Hawking,”Black holes and thermodynamics”, Phys. Rev. D 13, 191 (1976). DOI: doi.org/10.1103/PhysRevD.13.191
[56] J. M. Bardeen, B. Carter and S. W. Hawking, ”The Four laws of black hole mechanics”, Commun. Math. Phys. 31, 161 (1973). DOI: doi.org/10.1007/BF01645742
[57] S. Hawking and D. Page,”Thermodynamics of black holes in anti-de Sitter space”, Commun. Math. Phys. 87, 577 (1983). DOI: doi.org/10.1007/BF01208266
[58] P. Davis,”Thermodynamics of Black Holes”, Proc. R. Soc. A 353, 499 (1977). DOI: 10.1098/rspa.1977.0047
[59] C. S. Varsha, V. Venkatesha, N. S. Kavya and D. V. Singh, ”Impact of EUP correction on thermodynamics of AdS black hole”, Annals Phys. 477, 170002 (2025). DOI: doi.org/10.1016/j.aop.2025.170002
[60] H. K. Sudhanshu, D. V. Singh, S. Bekov, K. Myrzakulov and S. Upadhyay, ”P-v criticality and Joule–Thomson expansion in corrected thermodynamics of conformally dressed (2+1)D AdS black hole”, Int. J. Mod. Phys. A 38(29), 2350165 (2023). DOI: 10.1142/S0217751X23501658
[61] M.H. Dehghani, S.Kamrani,A. Sheykhi,”P-V criticality of charged dilatonic black holes”, Phys. Rev. D 90, 104020 (2014). DOI: doi.org/10.1103/PhysRevD.90.104020
[62] R.A. Hennigar,W.G. Brenna, R.B.Mann,”P-v criticality in quasitopological gravity.”, JHEP 1507, 077 (2015). DOI: doi.org/10.1007/JHEP07(2015)077
[63] H.-H. Zhao, L.-C. Zhang, M.-S. Ma, R. Zhao, ”P-V criticality of higher dimensional charged topological dilaton de Sitter black holes”, Phys. Rev. D 90, 064018 (2014). DOI: doi.org/10.1103/PhysRevD.90.064018
[64] D. Hansen, D. Kubiznak, R.B. Mann, ”Universality of P-V criticality in horizon thermodynamics”, JHEP 1701, 047 (2017). DOI:10.1007/JHEP01(2017)047
[65] S. Upadhyay, B. Pourhassan and H. Farahani, ”P-V criticality of first-order entropy corrected AdS black holes in massive gravity”, Phys. Rev. D 95(10), 106014 (2017). DOI:10.1103/PhysRevD.95.106014
[66] S. H. Hendi, S. Panahiyan, S. Upadhyay and B. Eslam Panah,”Charged BTZ black holes in the context of massive gravity’s rainbow”, Phys. Rev. D 95(8), 084036 (2017). DOI: doi:10.1103/PhysRevD.95.084036
[67] V. K. Srivastava, S. Upadhyay, A. K. Verma, D. V. Singh, Y. Myrzakulov and K. Myrzakulov, ”Exploring non-perturbative effects on quasi-topological black hole thermodynamics”, Phys. Dark Univ. 48, 101915 (2025). DOI: doi:10.1016/j.dark.2025.101915
[68] S. Soroushfar, H. Farahani and S. Upadhyay, ”Non-perturbative correction to thermodynamics of conformally dressed 3D black hole”, Phys. Dark Univ. 42, 101272 (2023). DOI: doi:10.1016/j.dark.2023.101272
[69] B. Pourhassan and S. Upadhyay, ”Perturbed thermodynamics of charged black hole solution in Rastall theory”,Eur. Phys. J. Plus 136(3), 311 (2021). DOI: doi:10.1140/epjp/s13360-021-01271-9
[70] S. Upadhyay,”Leading-order corrections to charged rotating AdS black holes thermodynamics”,Gen. Rel. Grav. 50(10), 128 (2018). DOI: doi.org/10.1007/s10714-018-2459-0
[71] S. Upadhyay, ”Quantum corrections to thermodynamics of quasitopological black holes”, Phys. Lett. B 775, 130 (2017). DOI: doi.org/10.1016/j.physletb.2017.10.059
[72] A. Kumar, D. Veer Singh and S. G. Ghosh, ”D-dimensional Bardeen-AdS black holes in Einstein-Gauss-Bonnet theory”, Eur. Phys. J. C 79(3), 275 (2019). DOI: doi.org/10.1140/epjc/s10052-019-6773-9
[73] S. G. Ghosh, A. Kumar and D. V. Singh,”Anti-de Sitter Hayward black holes in Einstein–Gauss–Bonnet gravity”, Phys. Dark Univ. 30, 100660 (2020). DOI: 10.1016/j.dark.2020.100660
[74] S. G. Ghosh, D. V. Singh and S. D. Maharaj, ”Regular black holes in Einstein-Gauss-Bonnet gravity”,Phys. Rev. D 97(10), 104050 (2018). DOI: doi.org/10.1103/PhysRevD.97.104050
[75] P. Letelier,”Clouds of strings in general relativity”,Phys. Rev. D 20, 1294 (1979). DOI: doi.org/10.1103/PhysRevD.20.1294 
Volume 6, Issue 2
January 2026
Pages 87-103
  • Receive Date: 16 November 2025
  • Revise Date: 15 December 2025
  • Accept Date: 22 December 2025