[1] D. Lovelock, ”The Einstein tensor and its generalizations”, J. Math. Phys. 12, 498 (1971). DOI: 10.1063/1.1665613
[2] D. Lovelock, ”The four-dimensionality of space and the einstein tensor”, J. Math. Phys. 13, 874 (1972). DOI: 10.1063/1.1666069
[3] N. Deruelle and L. Farina-Busto, ”Lovelock gravitational field equations in cosmology”, Phys. Rev. D 41, 3696 (1990).
[4] D. J. Gross and E. Witten, ”Superstring modifications of Einstein’s equations”, Nucl. Phys. B 277, 1 (1986). DOI: doi.org/10.1016/0550-3213(86)90429-3
[5] D.G. Boulware and S. Deser, ”String-Generated Gravity Models”, Phys. Rev. Lett. 55, 2656 (1985). DOI: doi.org/10.1103/PhysRevLett.55.2656
[6] F.R. Tangherlini, ”Schwarzschild field inn dimensions and the dimensionality of space problem”, Nouvo Cim. 27, 636 (1963).
[7] S. Mignemi and N. R. Stewart, ”Charged black holes in effective string theory”, Phys. Rev. D 47, 5259 (1993). DOI: doi.org/10.1103/PhysRevD.47.5259
[8] T. H. Lee, D. Baboolal and S. G. Ghosh, ”Lovelock black holes in a string cloud background”, Eur. Phys. J. C 75, 297 (2015). DOI: doi.org/10.1140/epjc/s10052-015- 3515-5
[9] E. Herscovich and M. G. Richarte, ”Black holes in Einstein–Gauss–Bonnet gravity with a string cloud background”, Phys. Lett. B 689, 192 (2010). DOI: doi.org/10.1016/j.physletb.2010.04.065
[10] S. G. Ghosh, U. Papnoi and S. D. Maharaj, ”Cloud of strings in third order Lovelock gravity”, Phys. Rev. D 90, 044068 (2014). DOI: doi.org/10.1103/PhysRevD.90.044068
[11] S. G. Ghosh and S. D. Maharaj, ”Cloud of strings for radiating black holes in Lovelock gravity”, Phys. Rev. D 89, 084027 (2014). DOI: doi.org/10.1103/PhysRevD.89.084027
[12] J. P. Morais Graça, G. I. Salako and V. B. Bezerra, ”Thermodynamics and remnants of Kiselev black holes in Rainbow gravity”, Int. J. Mod. Phys. D 26, 1750113 (2017). DOI: doi.org/10.1007/s10714-021-02897-x
[13] S. G. Ghosh, D. V. Singh and S. D. Maharaj, ”Regular black holes in Einstein-Gauss-Bonnet gravity”, Phys. Rev. D 97, 104050 (2018). DOI: doi.org/10.1103/PhysRevD.97.104050
[14] S. H. Hendi, S. Panahiyan and B. Eslam Panah, ”Charged Dilatonic Black Holes in Gravity’s Rainbow”, Eur. Phys. J. C 75, 296 (2015). DOI: doi.org/10.1140/epjc/s10052- 016-4119-4
[15] S. Hyun and C. H. Nam, ”Charged AdS black holes in Gauss–Bonnet gravity and nonlinear electrodynamics”, Eur. Phys. J. C 79, 737 (2019).
[16] S. G. Ghosh, ”A nonsingular rotating black hole”, Eur. Phys. J. C 75, no. 11, 532 (2015). DOI: doi.org/10.48550/arXiv.1408.5668
[17] Y. Zhang, Y. Zhu, L. Modesto and C. Bambi, ”Can static regular black holes form from gravitational collapse?”, Eur. Phys. J. C 75, 96 (2015). DOI: doi.org/10.1140/epjc/s10052-015-3311-2
[18] A. Borde, ”Open and closed universes, initial singularities and inflation”, Phys. Rev. D 50, 3692 (1994). DOI: doi.org/10.1103/PhysRevD.50.3692
[19] A. Borde,”Regular black holes and topology change”, Phys. Rev. D 55, 7615 (1997).
[20] DOI: doi.org/10.1103/PhysRevD.55.7615 S. G. Ghosh, U. Papnoi, and S. D. Maharaj, ”Cloud of strings in third order Lovelock gravity”, Phys. Rev. D 90, 044068 (2014). DOI: doi.org/10.1103/PhysRevD.90.044068
[21] M. Barriola, A. Vilenkin, ”Gravitational field of a global monopole”, Phys. Rev. Lett. 63, 341 (1989). DOI: doi.org/10.1103/PhysRevLett.63.341
[22] E. Ayon-Beato, A. Garcia, ”The Bardeen Model as a Nonlinear Magnetic Monopole”, Phys. Lett. B 493, 149 (2000). DOI: doi.org/10.1016/S0370-2693%2800%2901125-4
[23] E. Ayon-Beato and A. Garcia, ”Non-Singular Charged Black Hole Solution for Non-Linear Source”, Gen. Relativ. Gravit. 31, 629 (1999). DOI: doi.org/10.1023/A%3A1026640911319
[24] E. Ayon-Beato and A. Garcia, ”Four-parametric regular black hole solution”, Gen. Relativ. Gravit.37, 635 (2005). DOI: doi.org/10.1007/s10714-005-0050-y
[25] E. Ayon-Beato and A. Garcia, ”Regular black hole in general relativity coupled to nonlinear electrodynamics”, Phys. Rev. Lett. 80, 5056 (1998). DOI: doi.org/10.1103/PhysRevLett.80.5056
[26] O.B. Zaslavskii, ”Regular black holes with flux tube core”, Phys. Rev. D 80, 064034 (2009). DOI: doi.org/10.1103/PhysRevD.80.064034
[27] J. Bardeen, ”Non-singular general relativistic gravitational collapse”, in Proceedings of GR5 (Tiflis, U.S.S.R., 1968).
[28] S. Ansoldi, ”Spherical black holes with regular center: A Review of existing models including a recent realization with Gaussian sources”, DOI: doi.org/10.48550/arXiv.0802.0330
[29] J. P. S. Lemos and V.T. Zanchin, ”Regular black holes: Electrically charged solutions, Reissner-Nordstróm outside a de Sitter core”,Phys. Rev. D 83, 124005 (2011). DOI: doi.org/10.1103/PhysRevD.83.124005
[30] L. Xiang, Y. Ling and Y. G. Shen, ”Singularities and the Finale of Black Hole Evaporation”, Int. J. Mod. Phys. D 22, 1342016 (2013). DOI: doi.org/10.1142/S0218271813420169
[31] H. Culetu, ”On a regular charged black hole with a nonlinear electric source”, Int. J. Theor. Phys. 54, 2855 (2015). DOI: doi.org/10.1007/s10773-015-2521-6
[32] L. Balart and E. C. Vagenas, ”Regular black hole metrics and the weak energy condition”, Phys. Lett. B 730, 14 (2014). DOI: doi.org/10.1016/j.physletb.2014.01.024
[33] I. G. Dymnikova,”Thermodynamics of horizons in a globally regular spherically symmetric spacetime”, Int. J. of Mod. Phys. D, 5 529 (1996); Phys. Lett. B 685, 12 (2010); Gen. Rel. Grav. 24, 235 (1992). DOI: doi.org/10.1134/S0202289312030048
[34] H. K. Sudhanshu, D. V. Singh, S. Upadhyay, Y. Myrzakulov and K. Myrzakulov, ”Thermodynamics of a newly constructed black hole coupled with nonlinear electrodynamics and cloud of strings”, Phys. Dark Univ. 46 (2024), 101648. DOI: doi.org/10.1016/j.dark.2024.101648
[35] A. Kumar, D. V. Singh and S. Upadhyay, ”Impact of Perfect Fluid Dark Matter on the Thermodynamics of AdS Ayón-Beato-GarcÍa Black Holes”, JHAP 4(4), 85 (2024). DOI: doi.org/10.22128/jhap.2024.884.1096
[36] D. V. Singh, S. G. Ghosh and S. D. Maharaj, ”Exact nonsingular black holes and thermodynamics”, Nucl. Phys. B 981, 115854 (2022). DOI: doi.org/10.1016/j.nuclphysb.2022.115854
[37] A. Kumar, D. V. Singh, Y. Myrzakulov, G. Yergaliyeva and S. Upadhyay, ”Exact solution of Bardeen black hole in Einstein–Gauss–Bonnet gravity”, Eur. Phys. J. Plus 138(12), 1071 (2023). DOI: 10.1140/epjp/s13360-023-04718-3
[38] P. Paul, S. Upadhyay and D. V. Singh, ”Charged AdS black holes in 4D Einstein– Gauss–Bonnet massive gravity”, Eur. Phys. J. Plus 138(6), 566 (2023). DOI: 10.1140/epjp/s13360-023-04176-x
[39] B. Pourhassan, M. Dehghani, S. Upadhyay, I. Sakalli and D. V. Singh, ”Exponential corrected thermodynamics of Born–Infeld BTZ black holes in massive gravity”, Mod. Phys. Lett. A 37(33), 2250230 (2022). DOI: doi.org/10.1142/S0217732322502303
[40] S. Upadhyay and D. V. Singh, ”Black hole solution and thermal properties in 4D AdS Gauss–Bonnet massive gravity”, Eur. Phys. J. Plus 137(3), 383 (2022). DOI: 10.1140/epjp/s13360-022-02569-y
[41] R. V. Maluf and J. C. S. Neves, ”Thermodynamics of a class of regular black holes with a generalized uncertainty principle”, Phys. Rev. D 97, 104015 (2018). DOI: doi.org/10.1103/PhysRevD.97.104015
[42] Mang-Sen Ma and Ren Zhao, ”Corrected form of the first law of thermodynamics for regular black holes”, Class. Quantun Grav. 31 245014 (2014). DOI: doi.org/10.1088/0264- 9381/31/24/245014
[43] A. Kumar, D. V. Singh and S. Upadhyay, ”Ayón–Beato–García black hole coupled with a cloud of strings: Thermodynamics, shadows and quasinormal modes”, Int. J. Mod. Phys. A 39(31), 2450136 (2024). DOI: 10.1142/S0217751X24501367
[44] B. Singh, D. Veer Singh and B. Kumar Singh, ”Thermodynamics, phase structure and quasinormal modes for AdS Heyward massive black hole”,Phys. Scripta 99(2), 025305 (2024). DOI: 10.1088/1402-4896/ad1da4
[45] P. Paul, S. Upadhyay, Y. Myrzakulov, D. V. Singh and K. Myrzakulov, ”More exact thermodynamics of nonlinear charged AdS black holes in 4D critical gravity”, Nucl. Phys. B 993, 116259 (2023). DOI: doi.org/10.1016/j.nuclphysb.2023.116259
[46] D. V. Singh, A. Shukla and S. Upadhyay, ”Quasinormal modes, shadow and thermodynamics of black holes coupled with nonlinear electrodynamics and cloud of strings”, Annals Phys. 447, 169157 (2022). DOI: doi.org/10.1016/j.aop.2022.169157
[47] B. Singh, B. K. Singh and D. V. Singh, ”Thermodynamics, phase structure of Bardeen massive black hole in Gauss-Bonnet gravity”,Int. J. Geom. Meth. Mod. Phys. 20(08), 2350125 (2023). DOI: 10.1142/S0219887823501256
[48] Y. Myrzakulov, K. Myrzakulov, S. Upadhyay and D. V. Singh,”Quasinormal modes and phase structure of regular AdS Einstein–Gauss–Bonnet black holes”, Int. J. Geom. Meth. Mod. Phys. 20(07), 2350121 (2023). DOI: doi.org/10.1142/S0219887823501219
[49] D. V. Singh, V. K. Bhardwaj and S. Upadhyay, ”Thermodynamic properties, thermal image and phase transition of Einstein-Gauss-Bonnet black hole coupled with nonlinear electrodynamics”, Eur. Phys. J. Plus 137(8), 969 (2022). DOI: doi.org/10.1140/epjp/s13360-022-03208-2
[50] B. K. Vishvakarma, D. V. Singh and S. Siwach, ”Parameter estimation of the BardeenKerr black hole in cloud of strings using shadow analysis”, Phys. Scripta 99(2), 025022 (2024). DOI: doi.org/10.48550/arXiv.2310.20393
[51] B. K. Vishvakarma, D. V. Singh and S. Siwach, ”Shadows and quasinormal modes of the Bardeen black hole in cloud of strings”, Eur. Phys. J. Plus 138(6), 536 (2023). DOI:10.1140/epjp/s13360-023-04174-z
[52] D. V. Singh, S. Upadhyay, Y. Myrzakulov, K. Myrzakulov, B. Singh and M. Kumar, ”Thermodynamic behavior and phase transitions of black holes with a cloud of strings and perfect fluid dark matter”, Nucl. Phys. B 1016, 116915 (2025). DOI: doi.org/10.1016/j.nuclphysb.2025.116915
[53] J. D. Bekenstein, ”Black holes and the second law”, Lett. Nuovo Cim. 4, 737 (1972). DOI: 10.1007/BF02757029
[54] J. D. Bekenstein,”Black holes and entropy”, Phys. Rev. D 7, 2333 (1973). DOI: doi.org/10.1103/PhysRevD.7.2333
[55] S. W. Hawking,”Black holes and thermodynamics”, Phys. Rev. D 13, 191 (1976). DOI: doi.org/10.1103/PhysRevD.13.191
[56] J. M. Bardeen, B. Carter and S. W. Hawking, ”The Four laws of black hole mechanics”, Commun. Math. Phys. 31, 161 (1973). DOI: doi.org/10.1007/BF01645742
[57] S. Hawking and D. Page,”Thermodynamics of black holes in anti-de Sitter space”, Commun. Math. Phys. 87, 577 (1983). DOI: doi.org/10.1007/BF01208266
[58] P. Davis,”Thermodynamics of Black Holes”, Proc. R. Soc. A 353, 499 (1977). DOI: 10.1098/rspa.1977.0047
[59] C. S. Varsha, V. Venkatesha, N. S. Kavya and D. V. Singh, ”Impact of EUP correction on thermodynamics of AdS black hole”, Annals Phys. 477, 170002 (2025). DOI: doi.org/10.1016/j.aop.2025.170002
[60] H. K. Sudhanshu, D. V. Singh, S. Bekov, K. Myrzakulov and S. Upadhyay, ”P-v criticality and Joule–Thomson expansion in corrected thermodynamics of conformally dressed (2+1)D AdS black hole”, Int. J. Mod. Phys. A 38(29), 2350165 (2023). DOI: 10.1142/S0217751X23501658
[61] M.H. Dehghani, S.Kamrani,A. Sheykhi,”P-V criticality of charged dilatonic black holes”, Phys. Rev. D 90, 104020 (2014). DOI: doi.org/10.1103/PhysRevD.90.104020
[62] R.A. Hennigar,W.G. Brenna, R.B.Mann,”P-v criticality in quasitopological gravity.”, JHEP 1507, 077 (2015). DOI: doi.org/10.1007/JHEP07(2015)077
[63] H.-H. Zhao, L.-C. Zhang, M.-S. Ma, R. Zhao, ”P-V criticality of higher dimensional charged topological dilaton de Sitter black holes”, Phys. Rev. D 90, 064018 (2014). DOI: doi.org/10.1103/PhysRevD.90.064018
[64] D. Hansen, D. Kubiznak, R.B. Mann, ”Universality of P-V criticality in horizon thermodynamics”, JHEP 1701, 047 (2017). DOI:10.1007/JHEP01(2017)047
[65] S. Upadhyay, B. Pourhassan and H. Farahani, ”P-V criticality of first-order entropy corrected AdS black holes in massive gravity”, Phys. Rev. D 95(10), 106014 (2017). DOI:10.1103/PhysRevD.95.106014
[66] S. H. Hendi, S. Panahiyan, S. Upadhyay and B. Eslam Panah,”Charged BTZ black holes in the context of massive gravity’s rainbow”, Phys. Rev. D 95(8), 084036 (2017). DOI: doi:10.1103/PhysRevD.95.084036
[67] V. K. Srivastava, S. Upadhyay, A. K. Verma, D. V. Singh, Y. Myrzakulov and K. Myrzakulov, ”Exploring non-perturbative effects on quasi-topological black hole thermodynamics”, Phys. Dark Univ. 48, 101915 (2025). DOI: doi:10.1016/j.dark.2025.101915
[68] S. Soroushfar, H. Farahani and S. Upadhyay, ”Non-perturbative correction to thermodynamics of conformally dressed 3D black hole”, Phys. Dark Univ. 42, 101272 (2023). DOI: doi:10.1016/j.dark.2023.101272
[69] B. Pourhassan and S. Upadhyay, ”Perturbed thermodynamics of charged black hole solution in Rastall theory”,Eur. Phys. J. Plus 136(3), 311 (2021). DOI: doi:10.1140/epjp/s13360-021-01271-9
[70] S. Upadhyay,”Leading-order corrections to charged rotating AdS black holes thermodynamics”,Gen. Rel. Grav. 50(10), 128 (2018). DOI: doi.org/10.1007/s10714-018-2459-0
[71] S. Upadhyay, ”Quantum corrections to thermodynamics of quasitopological black holes”, Phys. Lett. B 775, 130 (2017). DOI: doi.org/10.1016/j.physletb.2017.10.059
[72] A. Kumar, D. Veer Singh and S. G. Ghosh, ”D-dimensional Bardeen-AdS black holes in Einstein-Gauss-Bonnet theory”, Eur. Phys. J. C 79(3), 275 (2019). DOI: doi.org/10.1140/epjc/s10052-019-6773-9
[73] S. G. Ghosh, A. Kumar and D. V. Singh,”Anti-de Sitter Hayward black holes in Einstein–Gauss–Bonnet gravity”, Phys. Dark Univ. 30, 100660 (2020). DOI: 10.1016/j.dark.2020.100660
[74] S. G. Ghosh, D. V. Singh and S. D. Maharaj, ”Regular black holes in Einstein-Gauss-Bonnet gravity”,Phys. Rev. D 97(10), 104050 (2018). DOI: doi.org/10.1103/PhysRevD.97.104050
[75] P. Letelier,”Clouds of strings in general relativity”,Phys. Rev. D 20, 1294 (1979). DOI: doi.org/10.1103/PhysRevD.20.1294