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Abstract. We construct several black holes coupled with the nonlinear electrodynam-
ics (NLED) known as a regular black hole, which becomes Maxwell’s theory in the weak
field limit. We present an exact regular black hole solution in the presence of a cloud of
strings (CoS), and Einstein-Gauss-Bonnet (EGB) gravity. We study the global proper-
ties of the solutions and derive the corrected first law of thermodynamics, because the
first law of thermodynamics is modified in the presence of NLED. In addition, we have
studied the thermodynamics properties associated with the EGB regular black hole
solution, the thermodynamic quantities (Mass, Temperature, Entropy, Heat Capacity
and Free Energy) is change in the presence of NLED, CoS, and EGB parameter.

Keywords: Einstein-Gauss-Bonnet Gravity; Nonlinear Electrodynamics.

COPYRIGHTS: ©2026, Journal of Holography Applications in Physics. Published by Damghan Uni-
versity. This article is an open-access article distributed under the terms and conditions of the Creative
Commons Attribution 4.0 International (CC BY 4.0).

https://creativecommons.org/licenses/by/4.0

(©MOM

87




88 Vijay Kumar Mishra and Manish Pandey

Contents

1 Introduction

2 Einstein-Gauss-Bonnet gravity with Nonlinear Electrodynamics
3 Einsten-Gauss-Bonnet regular black hole with Cloud of String
4 Thermodynamics

5 Conclusions

References

89

89

91

92

96

98



Thermodynamic Structure of EGB-RBH Coupled with Cloud of String 89

1 Introduction

Lovelock theories [1-3], incorporating higher-order curvature factors, extend Einstein’s gen-
eral relativity to higher dimensions. In the second-order Lovelock theory, often known as
Einstein-Gauss-Bonnet (EGB) gravity, the action is augmented with quadratic curvature
terms. This specific instance of EGB gravity has garnered considerable attention since the
EGB action inherently emerges in the low-energy regime of heterotic string theory [4]. The
static spherically symmetric solution in the EGB theory was initially identified by Boulware
and Deser [5], and then Wiltshire [6] gave the charged EGB black hole solution. A succes-
sion of notable studies examined black hole solutions in EGB gravity [7] for diverse sources
[8-13], including those associated with nonlinear electrodynamics (NLED) fields [14,15].

Due to their significance in astrophysical observations, black holes with NLED as a
matter source have been extensively studied [16-26]. The First regular black hole model
was proposed by Bardeen [27]. Tt is demonstrated that a regular black hole merely explains
how a black hole forms from an initial vacuum region in the setting of NLED. The only reason
NLED is preferred over Maxwell’s theory is that, in addition to conformal breaking, self-
energy and an infinite electric field also manifest at the location of a point charge. Based on
the Bardeen proposal, there are numerous black hole solutions based on Bardeen proposal
[28-40], and the characteristics of ordinary black holes are found in [41-52]. Following
Bekenstein and Hawking’s propositions regarding black hole entropy [53,54] and black hole
radiation [55], black holes are now seen as thermal systems. Bekenstein asserted that the
sum of black hole entropy and matter entropy constitutes a non-decreasing function of time
[56]. Hawking and Page [57,58] were the first to investigate the phase transition between
the AdS black hole and thermal AdS space. Phase transition is crucial for examining the
thermodynamic properties of entities at the critical point. This analysis has been examined
for different black holes [59-74].

Motivated by the above arguments, we find the regular black hole solution in the presence
of Cloud of String (CoS), and EGB gravity. The obtained black hole solution interpolates
with the Letailier black hole [75] in the limit of NLED, and EGB parameter as well as the
Schwarzschild black hole in the absence of NLED, CoS parameter, and EGB gravity. In turn,
we analyze the thermodynamic properties of these models and study the thermodynamic
stability (local and global stability) of this black hole. The black hole’s thermodynamic
quantities are modified by the presence of NLED and CoS.

The paper is organised as follows: we obtain a higher-dimensional regular (AdS) black
hole solution in Sec. 2, and also give the consistent equations of gravity coupled to NLED
and CoS. The study of the thermodynamical properties of higher-dimensional regular black
hole solutions in Sec. 3. In Sec. 4, we discuss the thermodynamic properties of regular EGB
black hole with CoS. Finally, the concluding remarks and results are presented in Sec. 5.

2 Einstein-Gauss-Bonnet gravity with Nonlinear Elec-
trodynamics

This study commences with the formulation of EGB gravity with a CoS in conjunction with
NLED, expressed as follows:

S = % / dPx/ =g R+ aLlgp + L(F)], (2.1)
M
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where « denotes the Gauss-Bonnet (GB) coupling coefficient, with the condition o > 0
[1-3,7]. NLED is characterized by the Lagrangian L(F') in the invariant F' = F,, F* /4,
where F),,, denotes the electromagnetic field tensor related to the gauge potential A, through
the expression F),, = 2V[,A,]. The GB Lagrangian is expressed in the form [5,6]

Lap = Rus R’ — 4R, R"™ + R?, (2.2)

where, R, denotes the Ricci tensor, R,,s signifies the Riemann tensor, and R represents
the Ricci scalar. The variation of the action concerning the metric g, yields the subsequent
GB equations of motion [5,6]

Guv + aHyy, = TNFEP 4+ TS =2 aggf) F,,Ff — QWC(F)] , (2.3)
V,u (agg) FW> =0 and V,("F,)=0. (2.4)

where G, denotes the Einstein tensor and H,,, represents the Lanczos tensor [1,2]
1
Hy =2 (= Ruuosr RS = 2Rypuo R = 2Rys %, + Ry, ) - sLangu. (25)

The Lagrangian density of the nonlinear matter field is

—i(2e2F)2%%34 . eP=3
E(F) = Fe e ) with s = W (26)
We consider the following anstaz for the Maxwell field [72,73]
E,, = 255; 5512 gsin by, D =4,
gP-3 D—4
Op—3 Op_2 . .
F, = 26[; 35V]D o) sinfp_s H sin?0; | , D > 5, (2.7)
j=1
with I as
2(D-3)
= 5,300=2)" (2.8)
Equation (2.7) indicates that dF' = 0, hence we derive
D-3 D—4
e’(r)25fj’35zf’2 iD—‘* sinfp_g H sin®0; | dOAdp A ... Adipp_s). (2.9)
j=1

This results in e(r) = e = constant. The other components of F),, exert minimal influence
compared to Fypy [72,73]. The energy-momentum tensor (EMT) can be expressed as

X
D — 2)Mke™ 75
TINLED _  rNLED _ ( )2D_i . (2.10)
T

Using EMT from Eq. (2.10), we can obtain the D- dimensional regular black hole. We
obtain the EMT for a CoS is
mEMPL )Y pEHeR Y

™==r= ="

(2.11)
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where p is the density of a string cloud and p (7)~'/2 is the density that doesn’t depend
on the gauge. The only part of the bivector ¥ that is still there is ¥ = —X"*. And since
T =Tr = —pX'", and 9, (\/r"T}) = 0, this means
a

t __ pr
,I’t _Tr _TD_Qv

(2.12)

for some real constant a, which is related to the global monopole [10].

3 Einsten-Gauss-Bonnet regular black hole with Cloud
of String

Now, we want to obtain D-dimensional static spherically symmetric solutions in the presence
of EGB gravity with a CoS as source and NLED . We assume that the metric has the form

1
f(r)
where dQ% _, is the metric of the (D-2) sphere. Using this metric ansatz, the rr component
of equation of motion (2.3) is

ds* = —f(r)dt* + dr? +r2dQ3_,, (3.1)

(r® = 2ar® (f (r) = 1)) f' (r) + (D =3)r* (f (r) = 1) = D1\ (D—22 D ’

(3.2)
in which a prime denotes a derivative with respect to r, & = (D — 3) (D — 4) o, In general,
Eq. (3.2) has one real and two complex solutions. Eq. (3.2) admits the following solution

r2 8aM ok 8aa

This is the black hole solution in the presence of CoS, GB gravity and NLED. The Eq. (3.3)
reduces to black hole solution in the presence of CoS, when k =0, — 0 [10]

r? 8aM 8aa
f(r)_1+264<1i\/1+(D—3)TD_1+(D—2)7“D_2>7 (3.4)

and EGB regular black hole when CS parameter swith off [74] and also EGB black hole for
k=0 [5].

The numerical value of Cauchy and event horizon tabulated in the Table (1) and depicted in
the Fig. 2. The size of the horizon decreases with increasing the dimensions and increases
with Gauss-Bonnet the coupling constant « corresponding to the deviation parameter k.
The horizon also decreases with CS parameter a. To study the general structure of solution
(3.3), we take the limit » — oo or m = a = 0 in solution (3.3) to obtain

D—2 ( % Mke™ 705

lim fi(r)=1+ g, and lim f_(r)=1. (3.5)

r—00 7—>00

This means that the positive branch of the solution is asymptotically de Sitter (-anti-de
Sitter) depending on the sign of « (£), while the negative branch of the solution is asymp-
totically flat. If you choose the right values a and k, the solution’s horizon will be when
f(r) = 0. As a changes, we plot f(r) vs. r in different directions, but k stays the same.
When the dimension is D < 6, these solutions have two horizons. When the dimension is
D > 6, they have three horizons (see Fig. 1). As the number of a CoS goes up, the horizon’s
radius goes up as well.
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Figure 1: The plot f(r) vs. horizon radius r of the various values of CoS parameter a
corresponding to the deviation parameter (k) with constant values of a.

4 Thermodynamics

We examine the thermodynamic properties of regular EGB black hole with CoS, in term of
the horizon radius (r4). Our analysis will be confined to the negative branch of the EGB
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Table 1: Cauchy horizon radius (r_), the event horizon radius (ry) and 6 = rp —r_ for
various values of CoS parameter a.

a=0.1 a=0.2
Dim. a r_ T4 0 k a r_ T4 0
D=5 0.15 0.5025 0.7134 0.2109 0.12 0.20 0.4341 0.6811 0.2470
k=0.23 0.10 0.5424 0.6578 0.1154 0.15 0.4585 0.6408  0.1823
ap=0.077  0.60 0.60 0 ap=0.078 0.56356  0.5356 0
D=6 0.65 0.4494 0.6524 0.2030 | 0.1 1.85 0.4381 0.6664  0.2283
k=0.1 0.55 0.4763 0.6182 0.1419 1.75 0.4697  0.6207  0.1510
ap=0.47 0.5426 0.5426 0 ap=1.667 0.5373  0.5373 0
D=7 1.5 0.4729 0.5729 0.1002 0.04 1.92 0.3892 0.4793  0.0901
k=0.08 | 1.125 0.4919 0.5563 0.0644 1.90 0.4036  0.4667  0.0631
ap=1.105  0.5261 0.5261 0 ap= 1.875 0.4364  0.4364 O
D=8 0.2 0.4156 0.5153 0.0997 | 0.005 0.2 0.3477 04141 0.0664
k=0.014 | 0.15 0.4287  0.5052 0.0735 0.15 0.3558  0.3993  0.0400
ag=0.07 0.4622 0.4622 0 ap=0.10 0.3772 03772 0

solution (3.3), characterized by mass (M), Gauss-Bonnet coupling («), deviation parameter
(k), and CoS parameter (a). The black hole mass is obtained in terms of horizon radius r

as

D —3)rP—3 o) 2 s

a, =PI (8 ) (4.1)
2 T D20

The temperature of a regular EGB black hole with CoS is expressed as

D-3 9 2D — 8)(D — 5)a
T =y |BD =8+ : (D )(2)ri -
2a D —3)k 2a 5 -
(D —2)r2-¢ : TD—Q) (7“27 — (et a)) (4.2)

By performing the limit a — 0, the temperature (4.2) reduces to regular EGB black hole

D=3 , (2D-8)(D-5)a (D-3)k [ 2a .
= (QD_S)TJFJF( (D—)(2)ri) +(rD*2) <Tf—7—(++o‘)> (4.3)

and also EGB black hole [5] in the limit & — 0. The numerical values of the temperature
of the regular EGB black hole with CoS are tabulated in the table 2 and plotted in the Fig.
2. The temperature decreases with the CoS parameter a and the dimensions D.

Subsequently, we compute the other important quantity related to the black hole horizon,
its entropy, which may be derived from the first law of thermodynamics [73]

dM+ = T+ dS+, (44)

where S, is the entropy of the black hole. Hence, the black hole entropy can be obtained
by integrating the first law to give

M
S, :/T;ldM+:/T;1%r:dr+, (4.5)

and substituting (4.1) and (4.2) into (4.5), we find the entropy of the regular EGB black
hole as

St = 47r/ek/rfr)_3(7“_2|r +2a&) dry. (4.6)
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Figure 2: The plot of temperature (7) vs. horizon radius (r; ) with various values of the
deviation parameter (k) and the CoS parameter (a)

Interestingly this can be integrated in closed form

- —2)a\ k/rP73
o _2AD—ymd | (D=t P 4 AZRE T g mkD—2/D=3 (g 4 60) . _VE
— — T
RCED) 2 " D=3

(4.7)
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Table 2: The maximum Hawking temperature Ti” az at critical radius 71 for different values
of CoS parameter a and different dimension D = 5,6,7 and 8 with fixed value of k = 0.10.

a=0.1 a=0.2
Dimensions a rT T_{V‘” a rT T_ﬂ/[ ar
D=5 0.0 0.9345 0.1002 0.0 1.145 0.07768

0.1 0.9394 0.09704 0.1 1.157 0.07558
0.2 0.9565 0.09408 0.2 1.189 0.07359
0.3 0.9840 0.09126 0.3 1.207 0.07169
D=6 0.0 1.112 0.1146 0.0 1.273 0.08785
0.2 1.143 0.1124 0.2 1.322 0.08672
0.4 1.156 0.1108 0.4 1.342 0.08559
0.6 1.186 0.1107 0.6 1.371 0.08423
D=7 0.0 1.148 0.1324 0.0 1.167 0.1047
0.3  0.1306 0.1308 0.3 1.171 0.1035
0.6 1.181 0.1294 0.6 1.182 0.1027
0.9 1.196 0.1282 0.9 1.188 0.1018

D =38 0.0 1.091 0.1536 0.0 1.269 0.1449
0.5 1.103 0.1521 0.5 1.272 0.1440
1.0 1.109 0.1509 1.0 1.277 0.1432
1.5 1.118 0.1495 1.5 1.282 0.1426

Nonetheless, the entropy fails to comply with the area law. The entropy of the EGB black
hole diverges from the formulation of general relativity. When k = 0 and a = 0, Equation
(4.7) can be read as the entropy of the EGB black hole as follows,

_ _ & : TD—S
oD — 3)wrd | (D= 2)k 4P~ 4 B8 )b/
D -2 7‘3_ ’

Sy = (4.8)

is precisely equivalent to the entropy of the EGB black hole [5]. The expression Sy = %wri
represents the entropy of the 5D Schwarzschild-Tangherlini black hole.

The thermodynamic stability of the black hole is assessed by examining the behavior of
its heat capacity (C4). The heat capacity of a black hole is characterized as [72,73]

cr =5 = (55) (57 (49)

substituting (4.1) and (4.2) into (4.9), the heat capacity of the regular EGB hole, determined
by using Eq. (4.9) reads

(13 +2a) (D = 2 Ar3P % = 2o 4 g (2 + apd - 3e))

C. — —4mp3 k/P7?
+ Trie (D - 2)T£Bl - 2a7"_6‘_Bg + k(4aBs + (D — 2)743_34)
with
(D=5), . 13-53,_ D-5_
Al:’ri+ma7 Blz5r+—|— D_Sria_i_mQ
D —1)r2 +2(D - 2)a
By = (D+1)r2 +2(D — 1)@, 33:< )13+ 2( )a

7“D79
By = (D -2)r} + (3D + 4)ria +2(D + 2)a*. (4.10)
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In the limit ¢ = 0 (4.10) the heat capacity reduces to regular EGB black hole and k = 0
and ¢ = 0, EGB black hole [5]. The global stability of the black hole is calculated by the
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Figure 3: The plot of heat capacity (C) vs. horizon radius (ry) with various values of the
deviation parameter (k) and the CoS parameter ( @) in various dimensions D = 5,& 6.

free energy. The free energy is

D — 3)rP-3 A 2 —: 2D — 8)(D — 5)a
F+:()7"+<1+02é_a4 ek/rfs_ri((QD_S)TiJr( 8)(D —5)a

2 i (D-— 2)7{’* (D —2)r}
_ _9)a »D-3
B 2 (D=3 [ 2a 2 ta ><((D2)k+rf B = Ch
(D - 2)7‘276 rb-2 731277 + r2
2wk P=3 (k + 6o Vk
_ W — ( )erf< 55 | ) (4.11)
+ L

The free energy is plotted in Figure 4. In the figure, we can see clearly that the black hole
is stable for smaller values of the horizon radius 7.

5 Conclusions

This study presents the higher-dimensional regular black hole solution within the framework
of CoS and EGB gravity. The derived black hole solution interpolates with the Letailier black
hole in the absence of NLED and EGB parameters, as well as the Schwarzschild black hole in
the limit of NLED, CoS parameters, and EGB gravity. Additionally, we have analyzed the
horizon structure of the derived black hole solution; the black hole possesses two horizons
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Figure 4: The plot free energy vs. horizon radius (r;) with various values of the deviation
parameter (k) and the CoS parameter (a) with fixed value of «.

for D < 6 and three horizons when the dimension exceeds D > 7. Furthermore, we have
examined the thermodynamic properties related to the EGB regular black hole solution,
noting the variations in thermodynamic parameters (Mass, Temperature, Entropy, Heat
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Capacity, and Free Energy) in the presence of NLED, CoS, and the EGB parameter.
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