Holographic Phase Transition of AdS Black Hole Solution Coupled with Nonlinear Electrodynamics

Document Type : Regular article

Authors

Department of Physics, Institute of Applied Science and Humanities, GLA University, Mathura 281406, India

Abstract

This study presents a novel $AdS$ black hole (BH) solution coupled with NLED and a cloud of string. Our solution interpolates to the $AdS$ Letailier BH in the absence of magnetic monopole charge ($q$) and deviation parameter ($k$), $AdS$ Hayward Letailier BH when in the absence of deviation parameter, $AdS$ regular Letailier BH in the absence of magnetic monopole charge, as well as Schwarzschild BH in the limit of $q = 0, k = 0, a = 0$. We have studied the horizon structure of the obtained solution; the BH has two horizons (event and Cauchy) in contrast with the Schwarzschild BH. The thermodynamic quantities associated with the BH are modified in the presence of magnetic monopole charge, cloud of string parameter, and a deviation parameter. The first law of BH thermodynamics is modified in the presence of magnetic monopole charge and deviation parameter. Additionally, we examine the thermodynamics of the $AdS$ Letailier regular BH solution, considering the cosmological constant ($\Lambda$) as thermodynamic pressure ($P$), and analyze the critical points and phase structure of the BH within an extended phase space.  The plot of Gibbs free energy against temperature exhibits a swallow-tail behaviour, signifying a first-order phase transition that concludes at a second-order phase transition.

Keywords

Main Subjects

 

Article PDF

[1] J.M. Bardeen, B. Carter, and S.W. Hawking, ”The four laws of BH mechanics”, Comm. Math. Phys. 31, 161 (1973). DOI: 10.1007/BF01645742
[2] J. D. Bekenstein, ”Black holes and the second law”, Lett. Nuovo Cim. 4, 737 (1972). DOI: 10.1007/BF02757029
[3] J. D. Bekenstein, ”Black Holes and Entropy”, Phys. Rev. D 7, 2333 (1973). DOI: 10.1103/PhysRevD.7.2333
[4] S. W. Hawking, ”Black holes and thermodynamics”, Phys. Rev. D 13, 191 (1976). DOI: 10.1103/PhysRevD.13.191
[5] C. S. Varsha, V. Venkatesha, N. S. Kavya and D. V. Singh, ”Impact of EUP correction on thermodynamics of AdS black hole”, Annals Phys. 477, 170002 (2025). DOI: 10.1016/j.aop.2025.170002
[6] V. K. Srivastava, S. Upadhyay, A. K. Verma, D. V. Singh, Y. Myrzakulov and K. Myrzakulov, ”Exploring non-perturbative effects on quasi-topological black hole thermodynamics”, Phys. Dark Univ. 48, 101915 (2025). DOI: 10.1016/j.dark.2025.101915
[7] B. Pourhassan, H. Farahani, F. Kazemian, İ. Sakallı, S. Upadhyay and D. V. Singh, ”Non-perturbative correction on the black hole geometry”, Phys. Dark Univ. 44, 101444 (2024). DOI: 10.1016/j.dark.2024.101444
[8] H. K. Sudhanshu, D. V. Singh, S. Bekov, K. Myrzakulov and S. Upadhyay, ”P-v criticality and Joule–Thomson expansion in corrected thermodynamics of conformally dressed (2+1)D AdS black hole”, Int. J. Mod. Phys. A 38(29), 2350165 (2023). DOI: 10.1142/S0217751X23501658
[9] H. K. Sudhanshu, S. Upadhyay, D. Veer Singh, Y. Myrzakulov and K. Myrzakulov, ”Thermodynamics of charged accelerating AdS black hole”, Mod. Phys. Lett. A 38(34), 2350153 (2023). DOI: 10.1142/S0217732323501535
[10] P. Paul, S. Upadhyay and D. V. Singh, ”Charged AdS black holes in 4D Einstein– Gauss–Bonnet massive gravity”, Eur. Phys. J. Plus 138(6), 566 (2023). DOI: 10.1140/epjp/s13360-023-04176-x
[11] S.W. Hawking and D.N. Page, ”Thermodynamics of black holes in anti-de sitter space”, Communications in Mathematical Physics 87, 577 (1983). DOI: 10.1007/BF01208266
[12] R.G. Cai, Y.P. Hu, Q.Y. Pan, and Y.L. Zhang, ”Thermodynamics of Black Holes in Massive Gravity”, Phys. Rev. D 91, 024032 (2015). DOI: 10.1103/PhysRevD.91.024032
[13] N. Altamirano, D. Kubiznak, and R.B. Mann, ”Reentrant phase transitions in rotating anti-de Sitter black holes”, Phys. Rev. D 88, 101502 (2013). DOI: 10.1103/PhysRevD.88.101502
[14] D. Kubiznak and R.B. Mann, ”P-V criticality of charged AdS black holes”, JHEP 07, 033 (2012). DOI: 10.1007/JHEP07%282012%29033
[15] A. AlBarqawy, A. Awad, E. Elkhateeb and M. Tharwat, ”Dyonic Taub-NUT-AdS Black Branes: Thermodynamics and Phase Diagrams”, [arXiv:2502.19511 [gr-qc]]. DOI: 10.48550/arXiv.2502.19511
[16] A. Chamblin, R. Emparan, C.V. Johnson, and R.C. Myers, ”Charged AdS black holes and catastrophic holography”, Phys. Rev. D 60, 064018 (1999). DOI: 10.1103/PhysRevD.60.064018
[17] A. Chamblin, R. Emparan, C.V. Johnson, and R.C. Myers, ”Holography, thermodynamics and fluctuations of charged AdS black holes”, Phys. Rev. D 60, 104026 (1999). DOI: 10.1103/PhysRevD.60.104026
[18] B.P. Dolan, ”The cosmological constant and the black hole equation of state”, Class. Quant. Grav. 28, 125020 (2011). DOI: 10.1088/0264-9381/28/12/125020
[19] M. Cvetic, G. Gibbons, D. Kubiznak, and C. Pope, ”Black hole enthalpy and an entropy inequality for the thermodynamic volume”, Phys. Rev. D 84, 024037 (2011). DOI: 10.1103/PhysRevD.84.024037
[20] B. P. Dolan, A. Kostouki, D. Kubiznak et al, ”Isolated critical point from Lovelock gravity”, Class. Quantum Grav. 31(24), 242001 (2014). DOI: 10.1088/0264- 9381/31/24/242001
[21] R. A. Hennigar, R. B. Mann, and E. Tjoa, ”Superfluid Black Holes”, Phys. Rev. Lett. 118(2), 021301 (2017). DOI: 10.1103/PhysRevLett.118.021301
[22] S. W. Wei, Y. X. Liu, and R. B. Mann, “Repulsive Interactions and Universal Properties of Charged Anti–de Sitter Black Hole Microstructures” Phys. Rev. Lett. 123(7), 071103 (2019). DoI: 10.1103/PhysRevLett.123.071103
[23] X. X. Zeng, Y. W. Han, and D. Y. Chen, “Thermodynamics and weak cosmic censorship conjecture of BTZ black holes in extended phase space” Chin. Phys. C 43(10), 105104 (2019). DOI: 10.1088/1674-1137/43/10/105104
[24] K. J. He, G. P. Li, and X. Y. Hu, “Violations of the weak cosmic censorship conjecture in the higher dimensional f(R) black holes with pressure” Eur. Phys. J. C 80(3), 209 (2020). DOI: 10.1140/epjc/s10052-020-7669-4
[25] B. P. Dolan, “Pressure and volume in the first law of black hole thermodynamics” Class. Quantum Grav. 28, 235017 (2011). DOI: 10.1088/0264-9381/28/23/235017
[26] B. Hazarika and P. Phukon, ”Topology of restricted phase space thermodynamics in Kerr-Sen-Ads black holes”, Nucl. Phys. B 1012, 116837 (2025). DOI: 10.1016/j.nuclphysb.2025.116837
[27] A. Sood, M. S. Ali, J. K. Singh and S. G. Ghosh, ”Photon orbits and phase transition for Letelier AdS black holes immersed in perfect fluid dark matter”, Chin. Phys. C 48(6), 065109 (2024). DOI: 10.1088/1674-1137/ad361f
[28] F. Rahmani and M. Sadeghi, ”The phase transition of 4D Yang–Mills charged GB AdS black hole with cloud of strings”, Mod. Phys. Lett. A 39(35), 2450164 (2024). DOI: 10.1142/S0217732324501645
[29] Y. Sekhmani, J. Rayimbaev, G. G. Luciano, R. Myrzakulov and D. J. Gogoi, ”Phase structure of charged AdS black holes surrounded by exotic fluid with modified Chaplygin equation of state”, Eur. Phys. J. C 84(3), 227 (2024). DOI: 10.1140/epjc/s10052-024- 12597-w
[30] S. W. Wei and Y. X. Liu, ”Thermodynamic nature of black holes in coexistence region”, Sci. China Phys. Mech. Astron. 67(5), 250412 (2024). DOI: 10.48550/arXiv.2308.11886
[31] X. Q. Li, H. P. Yan, L. L. Xing and S. W. Zhou, ”Critical behavior of AdS black holes surrounded by dark fluid with Chaplygin-like equation of state”, Phys. Rev. D 107(10), 104055 (2023). DOI: 10.1103/PhysRevD.107.104055
[32] G. G. Luciano and E. Saridakis, ”P - v criticalities, phase transitions and geometrothermodynamics of charged AdS black holes from Kaniadakis statistics”, JHEP 12, 114 (2023). DOI: 10.1007/JHEP12
[33] Z. M. Xu and R. B. Mann, ”Thermodynamic supercriticality and complex phase diagram for the AdS black hole”, [arXiv:2504.05708 [gr-qc]].
[34] R. Somogyfoki and P. Ván, ”Volume in the Extensive Thermodynamics of Black Holes”, [arXiv:2503.22482 [gr-qc]].
[35] A. Baruah and P. Phukon, ”Restricted Phase Space Thermodynamics of 4D Dyonic AdS Black Holes: Insights from Kaniadakis Statistics and Emergence of Superfluid λ-Phase Transition”, [arXiv:2412.04375 [hep-th]].
[36] S. Masood and S. Mikki, ”The thermodynamic profile of AdS black holes in Lorentz invariance-violating Bumblebee and Kalb-Ramond gravity”, [arXiv:2411.06188 [gr-qc]].
[37] Y. Z. Du, H. F. Li, Y. B. Ma and Q. Gu, ”Topology and phase transition for EPYM AdS black hole in thermal potential”, Nucl. Phys. B 1006, 116641 (2024). DOI: 10.1016/j.nuclphysb.2024.116641
[38] J. Yang and R. B. Mann, ”Dynamic behaviours of black hole phase transitions near quadruple points”, JHEP 08, 028 (2023). DOI: 10.1007/JHEP08
[39] Z. F. Mai, R. Xu, D. Liang and L. Shao, ”Extended thermodynamics of the bumblebee black holes”,Phys. Rev. D 108(2), 024004 (2023). DOI: 10.1103/PhysRevD.108.024004
[40] A.D. Sakharov, ”The Initial Stage of an Expanding Universe and the Appearance of a Nonuniform Distribution of Matter” Sov. Phys. JETP,22, 241 (1966).
[41] E.B. Gliner, ”Algebraic Properties of the Energy-momentum Tensor and Vacuum-like States of Matter” Sov. Phys. JETP, 22, 378 (1966).
[42] D. V. Singh, S. Upadhyay, Y. Myrzakulov, K. Myrzakulov, B. Singh and M. Kumar, ”Thermodynamic behavior and phase transitions of black holes with a cloud of strings and perfect fluid dark matter”, Nucl. Phys. B 1016, 116915 (2025). DOI: 10.1016/j.nuclphysb.2025.116915
[43] A. Kumar, D. V. Singh and S. Upadhyay, ”Impact of Perfect Fluid Dark Matter on the Thermodynamics of AdS Ayón-Beato-GarcÍa Black Holes”, JHAP 4(4), 85 (2024). DOI: 10.22128/jhap.2024.884.1096
[44] A. Kumar, D. V. Singh and S. Upadhyay, ”Ayón–Beato–García black hole coupled with a cloud of strings: Thermodynamics, shadows and quasinormal modes”, Int. J. Mod. Phys. A 39(31), 2450136 (2024). DOI: 10.1142/S0217751X24501367
[45] H. K. Sudhanshu, D. V. Singh, S. Upadhyay, Y. Myrzakulov and K. Myrzakulov, ”Thermodynamics of a newly constructed black hole coupled with nonlinear electrodynamics and cloud of strings”, Phys. Dark Univ. 46, 101648 (2024). DOI: 10.1016/j.dark.2024.101648
[46] B. Singh, D. Veer Singh and B. Kumar Singh, ”Thermodynamics, phase structure and quasinormal modes for AdS Heyward massive black hole”, Phys. Scripta 99(2), 025305 (2024). DOI: 10.1088/1402-4896/ad1da4
[47] A. Kumar, D. V. Singh, Y. Myrzakulov, G. Yergaliyeva and S. Upadhyay, ”Exact solution of Bardeen black hole in Einstein–Gauss–Bonnet gravity”, Eur. Phys. J. Plus 138(12), 1071 (2023). DOI: 10.1140/epjp/s13360-023-04718-3
[48] B. Singh, B. K. Singh and D. V. Singh, ”Thermodynamics, phase structure of Bardeen massive black hole in Gauss-Bonnet gravity”, Int. J. Geom. Meth. Mod. Phys. 20(08), 2350125 (2023). DOI: 10.1142/S0219887823501256
[49] S.H. Hendi, S. Panahiyan, B. Eslam Panah, and M. Momennia, ”Phase transition of charged black holes in massive gravity through new methods”, Ann. Phys. (Berlin) 528, 819 (2016). DOI: 10.1002/andp.201600180
[50] S.H. Hendi and M.H. Vahidinia, ”Extended phase space thermodynamics and P-V criticality of black holes with a nonlinear source”, Phys. Rev. D 88, 084045 (2013). DOI: 10.1103/PhysRevD.88.084045
[51] S.H. Hendi, , R.B. Mann, S. Panahiyan, and B. Eslam Panah, ”Van der Waals like behavior of topological AdS black holes in massive gravity”, Phys. Rev. D 95, 021501 (2017). DOI: 10.1103/PhysRevD.95.021501
[52] C. Gao, ”Black holes with many horizons in the theories of nonlinear electrodynamics”, Phys. Rev. D 104, 064038 (2021). DOI: 10.1103/PhysRevD.104.064038
[53] Y. Zhao and H. Cheng, ”The thermodynamic stability and phase structure of the Einstein-Euler-Heisenberg-AdS black holes”, Chin. Phys. C 48(12), 125106 (2024). DOI: 10.48550/arXiv.2501.11075
[54] S. A. Hayward, ”Formation and evaporation of regular black holes”,Phys. Rev. Lett. 96, 031103 (2006). DOI: 10.1103/PhysRevLett.96.031103
[55] D. V. Singh, S. G. Ghosh and S. D. Maharaj, ”Exact nonsingular black holes and thermodynamics”, Nucl. Phys. B 981, 115854 (2022). DOI: 10.1016/j.nuclphysb.2022.115854
[56] A. Kumar, D. V. Singh and S. G. Ghosh, ”Hayward black holes in Einstein–Gauss– Bonnet gravity”, Annals Phys. 419, 168214 (2020). DOI: 10.1016/j.aop.2020.168214
[57] D. V. Singh, S. G. Ghosh and S. D. Maharaj, ”Bardeen-like regular black holes in 5D Einstein-Gauss-Bonnet gravity”, Annals Phys. 412, 168025 (2020). DOI: 10.1016/j.aop.2019.168025
[58] A. Kumar, D. Veer Singh and S. G. Ghosh, ”D-dimensional Bardeen-AdS black holes in Einstein-Gauss-Bonnet theory”, Eur. Phys. J. C 79(3), 275 (2019). DOI: 10.1140/epjc/s10052-019-6773-9
[59] S. G. Ghosh, D. V. Singh and S. D. Maharaj, ”Regular black holes in EinsteinGauss-Bonnet gravity”, Phys. Rev. D 97(10), 104050 (2018). DOI: 10.1103/PhysRevD.97.104050
[60] S.H. Hendi, G.Q. Li, J.X. Mo, S. Panahiyan, and B. Eslam Panah, ”New perspective for black hole thermodynamics in Gauss-Bonnet Born-Infeld massive gravity”, Eur. Phys. J. C 76, 571 (2016). DOI: 10.1140/epjc/s10052-016-4410-4
[61] S.H. Hendi, B. Eslam Panah and S. Panahiyan, ”Black Hole Solutions in Gauss- BonnetMassive Gravity in the Presence of Power- Maxwell Field”, Fortschr. Phys. (Prog. Phys.) 2018, 1800005 (2018). DOI: 10.1002/prop.201800005
[62] B. K. Vishvakarma, D. V. Singh and S. Siwach, ”Parameter estimation of the BardeenKerr black hole in cloud of strings using shadow analysis”,Phys. Scripta 99(2), 025022 (2024). DOI: 10.48550/arXiv.2310.20393
[63] S. Ryu and T. Takayanagi, ”Holographic Derivation of Entanglement Entropy from the anti–de Sitter Space/Conformal Field Theory Correspondence”, Phys. Rev. Lett. 96, 181602 (2006). DOI: 10.1103/PhysRevLett.96.181602
[64] S. Ryu and T. Takayanagi,”Aspects of Holographic Entanglement Entropy”, J. High Energy Phys. 0608, 045 (2006). DOI: 10.1088/1126-6708/2006/08/045
[65] M.B. Ahmed et al., ”Holographic CFT phase transitions and criticality for rotating AdS black holes”, JHEP 08, 142 (2023). DOI: doi.org/10.48550/arXiv.2305.03161
[66] J. Sadeghi, M. R. Alipour, M. A. S. Afshar and S. Noori Gashti, ”Exploring the phase transition in charged Gauss–Bonnet black holes: a holographic thermodynamics perspectives”, Gen. Rel. Grav. 56(8), 93 (2024). DOI: doi.org/10.1007/s10714-024-03285-x 
Volume 6, Issue 2
January 2026
Pages 70-86
  • Receive Date: 16 November 2025
  • Revise Date: 11 December 2025
  • Accept Date: 11 December 2025