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Abstract. This study presents a novel AdS black hole (BH) solution coupled with
NLED and a cloud of string. Our solution interpolates to the AdS Letailier BH in the
absence of magnetic monopole charge (q) and deviation parameter (k), AdS Hayward
Letailier BH when in the absence of deviation parameter, AdS regular Letailier BH in
the absence of magnetic monopole charge, as well as Schwarzschild BH in the limit of
q = 0, k = 0, a = 0. We have studied the horizon structure of the obtained solution;
the BH has two horizons (event and Cauchy) in contrast with the Schwarzschild BH.
The thermodynamic quantities associated with the BH are modified in the presence
of magnetic monopole charge, cloud of string parameter, and a deviation parameter.
The first law of BH thermodynamics is modified in the presence of magnetic monopole
charge and deviation parameter. Additionally, we examine the thermodynamics of
the AdS Letailier regular BH solution, considering the cosmological constant (Λ) as
thermodynamic pressure (P ), and analyze the critical points and phase structure of the
BH within an extended phase space. The plot of Gibbs free energy against temperature
exhibits a swallow-tail behaviour, signifying a first-order phase transition that concludes
at a second-order phase transition.
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1 Introduction

Black holes (Bhs) are a solution of the Einstein equations and a fundamental prediction of
the general theory of relativity (GTR). BH thermodynamics, fundamental components of
GTR, are essential characteristics of BHs, as formulated by Bekenstein, Carter, and Hawking
[1–4].In this thermodynamic system, a BH has an event horizon beyond which no particle,
even light, can escape the formidable gravitational force. Because of this property, no energy
or matter inside the BH can reach an outside viewer. However, when quantum effects are
included, a minimal quantity of energy may be emitted beyond the BH’s spacetime. Prior
studies have established that the temperature of a BH can be characterised by the radiation
it produces. Simultaneously, BHs may be considered thermodynamic systems characterized
by the Hawking temperatures. The thermodynamic principles governing BHs as thermal
systems are formulated through the concepts of temperature and entropy. The conserved
quantities of the BH thermodynamic system, including charge, angular momentum, and
thermodynamic potential, are also defined on the event horizon in normal phase space.
Since then, a great deal of research has been done on the effects of Hawking radiation on
the thermal characteristics of BHs in particular. [5–15].

We now examine the extended thermodynamics of the BH solution, in which the thermo-
dynamic pressure (P ) is considered as the cosmological constant (Λ). [16–19]. By treating
cosmological constant (Λ) as a dynamic thermodynamic variable, a new thermodynamic
quantity, specifically the thermodynamic pressure and volume of the BH, has been incor-
porated into the rules of BH thermodynamics (dM = TdS + PdV + ΦdQ). This theory
has led to a lot of interesting discoveries, like the van der Waals phase transition of the BH
thermodynamic system. It has also led to a lot of useful results. More research needs to be
done on the thermodynamic phase transition of a group of charged BHs [20–39]. It has been
generally agreed upon since then that a BH is just like any other thermodynamic system.

In this paper, we extend our work to study the thermodynamics of the AdS regular
BH solution. The regular BH model was first proposed by Bardeen based on Gliner and
Shakarov’s proposal [40,41]. Although the thermodynamics and extended phase transition
of the exact BH coupled with a nonlinear electrodynamics (NLED) are discussed in [42–
53]. Now there are many regular BH solutions in modified gravities based on the Bardeen
Proposal and studies of the properties of BHs [54–62]. The weak cosmic supervision theory
and the thermodynamic laws of BHs are still true in this expanded phase space, which is
very useful in real life. This paper changes the first rule of BH thermodynamics, which says
that dM = TdS + PdV +Φdq + kdK.

The rest of paper is arranged as follows. In Section 2, we briefly review the construction
and structure of a BH coupled with NLED and a cloud of strings, including the horizon
structure of the BH solution. Then we discuss extended thermodynamics, P − v criticality,
and phase transition in Section 3 and Section 4 is devoted to study for p − v criticality
and phase transition. Section 5 is devoted to the study of the holographic phase transition.
Finally, we conclude with the results and discussion in Section 6.

2 Regular black hole solution

The action of a BH coupled with NLED in AdS space-time can be written as

S =
1

2

∫
d4x

√
−q[R− 2Λ− 2L(F )], (2.1)
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where R is ricci scalar and Λ is cosmological constant. The L(F ) corresponds to matter
Lagrangian which depends on F = 1

4FµνF
µν . The variation action (2.1) with respect to qµν

and the potential Aa, we obtained the following equation of motion:

Rµν − 1

2
qµνR+ Λqµν = Tµν ≡ 2

[
∂L(F )

∂F
FµσF

σ
µ − q̃µνL(F )

]
, (2.2)

▽µ

(
∂L(F )

∂F
Fµν

)
= 0 and ▽µ (∗Fµν) = 0, (2.3)

where Fµν is Maxwell’s field-strength tensor

Fµν = 2δθ[µδ
ϕ
ν]Y (r, θ). (2.4)

It is essential to emphasize that spherically symmetric solutions exist with a globally regular
metric for gravity coupled to NLED characterized by the Lagrangian L(F ), which exhibits
an accurate weak field limit just in the magnetic scenario. From Eq. (2.4), the integration
of Eq. (2.2) yields

Fµν = 2δθ[µδ
ϕ
ν]Y (r, θ) = 2δθ[µδ

ϕ
ν]q sin θ. (2.5)

In this context, q is a constant (independent of r) and is validated using the exterior deriva-
tive of the differential 2-form (2.4). The field-strength tensor and, hence, the matter La-
grangian can be streamlined to

Fθϕ = q sin θ, F =
1

2

q2

r4
, (2.6)

and Lagrangian density of NLED is

L(F ) =
e−s(2q2F )1/4

q2

(
F

q

)1/3 [
3(2q2F )1/3

(1 + (2q2F )1/3)2
+

s(2q2F )1/4

(1 + (2q2F )1/3)

]
. (2.7)

The components of the energy-momentum tensor that are not zero are represented by the
equations

T t
t = T r

r =
6q3e−k/r

(r3 + q3)2
+

2ke−k/r

r(r3 + q3)
. (2.8)

Taking into consideration the following line element, we are able to construct a static spher-
ically symmetric BH solution in four dimensions,

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2dΩ2

2, (2.9)

where f(r) is the matric and dΩ2
2 = dθ2 + sin2 θdϕ2 is the metric of a 2-dimensional sphere.

Substituting the value of the energy-momentum tensor from Eq. (2.8) into Eq. (2.2), we
get

rf ′(r) + f(r)− 1 +
6l2

r2
=

6q3e−k/r

(r3 + q3)2
+

2ke−k/r

r(r3 + q3)
. (2.10)

Solving the above field equation (2.10), we get

f(r) = 1− 2Mr2

r3 + q3
e−k/r +

r2

l2
, (2.11)
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where (k = q2/2M) is the deviation parameter that measures the deviation from the Hay-
ward BH solution [54] and interpolates with the AdS regular BH in the absence of magnetic
monopole charge ([55]). The BH solution (2.11) is characterised by the four parameters mass,
magnetic monopole charge, deviation parameter (k) and cosmological constant (Λ = −3/l2).
The metric function f(r) = 0 determines the horizons of the BH solution (2.11). But this
equation (2.11) is not solved analytically because it is a transcendental equation. In order
to ascertain the horizons of the BH, we employ a numerical solution to the equation (2.11),
and the graphs that result are presented in Figure (1)

Fig. (1) shows the horizon structure of the obtained BH solution (2.11). The derived
BH solution (2.11) features two horizons (Cauchy and event) associated with the constant
values of the deviation parameters (k) and deviation parameter (q), as well as the mass (M)
and AdS length (l = 10). The Cauchy and event horizons coincide at the critical deviation
parameter (k = 0.74) with a fixed value of q(= 0.1) and the critical magnetic monopole
charge (q = 0.98) with fixed values of k(= 0.1) (see the Tab. 1). The horizon size increases
as the magnetic monopole charge ((q)) and deviation parameter decrease (k).
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Figure 1: Plot of the metric function of (f(r)) vs horizon radius (r) for various values of q
with a constant k = 0.1, and for various values of k with a fixed q = 0.1.

3 Extended Thermodynamics and Phase Transition

This section examines the thermal parameters, including temperature, entropy, heat capac-
ity, and Gibbs free energy, of the AdS regular BH (2.11) as a function of the horizon radius
(r+). The mass of the AdS regular BH (2.11) is determined in relation to its horizon radius
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Table 1: The table presents the horizon radius (r) for various values of q with fixed values
of k = 0.1 and k = 0.2, as well as different values of k with fixed q = 0.1 and 0.2.

k = 0.1 k = 0.2
q r+ r− δ q r+ r− δ

0.2 1.84 0.1 1.74 0.2 1.73 0.15 1.58
0.4 1.84 0.25 1.59 0.4 1.72 0.30 1.42
0.98 1.30 1.30 0.00 0.98 1.21 1.21 0.00

k = 0.1 k = 0.2
k r+ r− δ k r+ r− δ

0.2 1.72 0.15 1.57 0.2 1.72 0.09 1.63
0.4 1.50 0.19 1.31 0.4 1.50 0.22 1.28
0.74 0.72 0.72 0.00 0.73 0.78 0.78 0.00

by solving the equation (f(r) = 0). It provides

M+ =
q3 + r3+

2

(
1

r2+
+

1

l2

)
e

k
r+ . (3.1)

The mass of the derived BH solution (2.11) simplifies to the mass of the AdS Hayward BH
(M+ = (q3 + r3+)(r

2
+ + l2)/2r2+l

2) [54] in the absence of the deviation parameter and to the
mass of the AdS regular BH (M+ = r+(r

2
+ + l2)ek/r+/2l2) [55] when the magnetic monopole

charge is deactivated. The mass (3.1) of the BH coincides with that of the AdS Schwarzschild
BH (M+ = r+(r

2
+ + l2)/2l2) when there is no deviation parameter and magnetic monopole

charge present.
The temperature of a BH, referred to as the Hawking temperature, is determined using

the following equation,

T =
1

2π

√
−1

2
▽µ ξν ▽µ ξν =

κ

2π
, (3.2)

where ξν is the killing vector and κ is the surface gravity related to the temperature by
relation T = κ/2. The temperature of the obtained BH solution becomes

T+ =
f ′(r)

4π
=

1

4π

(
3r4+

l2(q3 + r3+)
−

k(l2 + r2+)

l2r2+
+

r3+ − 2q3

r+(q3 + r3+)

)
. (3.3)

The temperature of the derived BH solution (2.11) converges to the temperature of the
AdS Hayward BH (T+ =

3r5++l2(r3+−2q3)

4πr+l2(q3+r3+)
) [54] when the deviation parameter is absent,

and the temperature of the AdS regular BH (T+ =
3r3+−k(r2++l2)

4πr2+l2
) [55] when the magnetic

monopole charge is deactivated. Additionally, the temperature (3.3) reduces to that of the
AdS Schwarzschild BH (T+ =

3r2++l2

4πr+l2 ) in the absence of both the deviation parameter and
magnetic monopole charge. Figure 2 illustrates the relationship between temperature and
horizon radius for various values of q at a constant value of k = 0.1, as well as for varied
values of k with a fixed q = 0.1. The numerical data is presented in the Table 2.

The thermodynamic properties related to the BH (2.11) must adhere to the first law of
thermodynamics.

dM = TdS + ϕdq + kdK. (3.4)
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Figure 2: Plot of temperature T+ vs horizon radius r+ for various values of q with constant
values of k = 0.1 and various values of k with fixed q = 0.1

Table 2: The table for temperature T+ for various values of q with constant values of
k = 0.1, &0.2 and various values of k with fixed q = 0.1, &0.2

k = 0.1 k = 0.2 q = 0.1 q = 0.2
q r1+ r2+ q r1+ r2+ k r1+ r2+ k r1+ r2+

1.0 2.381 5.437 1.0 2.413 5.482 1.0 2.235 4.852 1.0 2.539 5.381
1.2 3.025 5.184 1.2 2.971 5.482 1.2 2.640 4.852 1.2 3.072 5.381
1.4 3.300 5.736 1.4 3.402 5.431 1.4 2.925 4.852 1.4 3.427 5.381
1.6 4.449 5.713 1.6 3.986 5.406 1.6 3.127 4.852 1.6 3.732 5.381

Given the explicit expressions for mass and Hawking temperature, the first law yields the
entropy value as

S =

∫
dM

T
dr = π(ek/r+(−2q3k−1 + r+k + r2+)− k2Exp

[
k

r+

]
. (3.5)

As we know, when heat capacity becomes negative, the system is unstable (C+ < 0) and
stable when the system has positive heat capacity (C+ > 0). The plot illustrates the graph
of heat capacity (C+) against horizon radius (r+) for various values of q with a constant
value of k = 0.1, and in another plot, for varied values of k while maintaining a fixed q = 0.1.
The formula for heat capacity at constant pressure is expressed as

C+ =
∂M+

∂T+
=

(
∂M+

∂r+

)(
∂r+
∂T+

)
. (3.6)

By substituting the mass from Eq. (3.1) and the temperature from Eq. (3.3) into Eq. (3.6),
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Table 3: The numerical values of horizon radius for various values of q with constantvalues
of k and various values of k with fixed q.

q = 0.1 q = 0.2 k = 0.1 k = 0.2
k r1+ r2+ k r1+ r2+ q r1+ r2+ q r1+ r2+

0.4 0.837 4.838 0.4 0.940 4.859 0.4 0.981 5.166 0.4 1.083 5.043
0.7 1.514 4.387 0.7 1.555 4.387 0.7 1.658 5.084 0.7 1.740 4.982
0.9 2.109 3.997 0.9 2.130 3.935 0.9 2.191 4.941 0.9 2.314 4.818
1.0 2.561 3.546 1.0 2.622 3.545 1.0 2.458 4.838 1.0 2.622 4.735

we obtain

C+ = −
2π

(
q3 + r3+

)2
ek/r+

(
q3

(
k
(
l2 + r2+

)
+ 2l2r+

)
r3+

(
k
(
l2 + r2+

)
− r+

(
l2 + 3r2+

)))
r+

(
2q6l2(k + r+) + 2q3r3+

(
2kl2 + 5l2r+ + 6r3+

)
+ r6+

(
2kl2 − l2r+ + 3r3+

)) .

(3.7)
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Figure 3: Plot of heat capacity (C+) vs. horizon radius (r+) for various values of q with
constant values of k = 0.1 and various values of k with fixed q = 0.1

The global study of BHs is studied by using the Gibbs free energy. When the Gibbs free
energy becomes negative, the system is stable (G+ < 0), and unstable when the system has
positive Gibbs free energy (G+ > 0). It is calculated as

G+ = M+ − T+S+. (3.8)

We obtain the Gibbs free energy of the AdS regular BH solution by substituting the mass



78 Talvinder Singh and Dharm Veer Singh

from equation (3.1) and the temperature from equation (3.3) into equation (3.8).

G+ =
ek/r+(l2 + r2+)(q

3 + r3+)

2l2r2+
−

2r3+(q
3 + r3+)

4kl2r2+(q
3 + r3+)

−
(l2 + r2+)((k − r+)r

3
+ + q3(k + 2r+))(e

k/r+(−2q3 + kr+(k + r+))− k3Ei[ k
r+

])

4kl2r2+(q
3 + r3+)

.

(3.9)

The graph of free energy, G+, as a function of horizon radius r+ for various values of q,
maintaining a constant value of k = 0.1. Additionally, another plot displays different values
of k while keeping q fixed at 0.1.
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Figure 4: Plot of Gibbs energy G+ vs horizon radius r+ for different values of q with fixed
values of k = 0.1 and different values of k with fixed q = 0.1

4 P-v Criticality and Phase Transition

This section examines the P − v criticality and phase transition of the AdS regular BH
solution (2.11) within the expanded phase space. In the expanded phase space, the cosmo-
logical constant functions analogously to thermodynamic pressure (Λ = −3/l2 = −8πP ).
The pressure of the resultant solution is determined using this relation (3.3).

P+ = −
3
(
g3k + 4πg3r2+T + 2g3r + kr3+ + 4πr5+T − r4+

)
8πr2+

(
g3k + kr3+ − 3r4+

) . (4.1)
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The critical radius (rc), critical temperature (Tc), and critical pressure (Pc) can be deter-
mined using the notion of an inflection point.(

∂P+

∂r+

)
T

=

(
∂2P+

∂r2+

)
T

= 0. (4.2)

Utilizing the aforementioned conditions, we get an equation,

60q6r + 84q3r4 − 3r7 + 9k(8q6 + 3q3r3 + r6) = 0. (4.3)

By solving the above equation, you can find the critical points and the horizon radius. You
can’t solve this problem analytically, but you can use numbers to find the critical radius rc,
critical pressure Pc, and critical temperature Tc. Tc = 0.199333 Pc = 0.082022 and now we
plot a graph of pressure,P with horizon radius r+ for different values of critical temperature
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Figure 5: Plot of pressure P+ vs horizon radius r+ for various values of T+ with fixed values
of k = 0.1 and g = 0.1 and plot of Gibbs free energy (G+) vs. temperature (T+) for various
values of P+ with constant value of q = 0.1 and k = 0.1.

For each pressure number (P < Pc, P = Pc, and, P > Pc), we also made a graph of
the Gibbs free energy versus the BH’s temperature. Below the critical pressure, it behaves
like a swallowtail (first-order phase transition); the first-order phase transition terminates
at P = Pc, and there is no phase transition when P > Pc.

5 Holographic Phase Transition
In order to investigate the phase structure from a holographic perspective, we must first
make the observation that the temperature of a specific BH is a function of the entropy of
the BH, wWhich is put in writing as

T+ =
3S3 − k

√
π(πl2 + S)(π3/2q3

√
S + S3)− πl2(2π3/2q3 + S2)

4l2π3/2S(π3/2q3 + S3/2)
. (5.1)

By applying the following relation, we are able to determine the critical radius, critical
temperature, and critical entropy by making use of the attributes of the inflexion points.(

∂T+

∂S+

)
=

(
∂2T+

∂S2
+

)
= 0. (5.2)



80 Talvinder Singh and Dharm Veer Singh

The scalar isocharges are plotted in the T+ − S+ plane in Figure 6, where the value of qc is
equal to 0.490. According to the relationship between AdS and CFT, Ryu and Takayanagi
[63,64] provided a sophisticated method for calculating the holographic entanglement en-
tropy. This method is represented by the following relation:

S+ =
Area of horizon

4G
. (5.3)

The entropy caused by holographic entanglement can be expressed in the following form:
[65,66]

S+ = π

∫ ϕ0

0

r2 sin2 ϕ

√
r2 +

1

f(r)

(
dr

dϕ

)2

dϕ. (5.4)

As the entangling surface, we chose the values of ϕ0 = 0.15, 0.49, and 0.60. In this case, we
considered ϕ = ϕ0 to be the encompassing surface.

With the boundary conditions r(0) = 0 and r(0) = r0, we are able to obtain the numerical
result of r(ϕ). We integrate S in Equation (5.4) once more up to a cut-off, which is somewhat
near to ϕ0, and then remove the pure AdS entanglement entropy (denoted by S+) with
the same entangling surface ϕ0 at the boundary. This is done in order to regularize the
entanglement entropy through the process of regularization. The regularized entanglement
entropy that corresponds to this situation is represented by the equation S+ = S+ − S′

+.
The plot of the T+δS+ plane under the condition of ϕ0 = 0.15 is shown in Figure 7. The
dotted curve represents the plane.
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Figure 6: The plot of T+ vs. S+. Here we set the parameter k = 0.1, l = 10 and the critical
value of magnetic monopole charge (qc) = 0.0490

0 50 100 150 200 250 300
0.015

0.020

0.025

0.030

δS+

T
+

q < qc

0 50 100 150 200 250 300
0.005

0.010

0.015

0.020

0.025

0.030

δS+

T
+

q = qc

0 50 100 150 200 250 300
0.005

0.010

0.015

0.020

0.025

0.030

δS+

T
+

q > qc

Figure 7: This is the plot of T+ versus S+. The parameters k = 0.1, l = 10, ϕ0 = 0.15, and
ϕc = 0.0490 are all set to their respective values below.

Furthermore, via the utilization of comparison analysis, as illustrated in Figure 7, we
have discovered that the entanglement entropy also exhibits a phase transition that is similar
to that of Van der Waals.
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6 Results and conclusion
We have examined the regular BH solution in AdS spacetime. Our approach interpolates
to the AdS Hayward BH when k = 0, the AdS regular BH when q = 0, and the AdS
Schwarzschild BH in the limit as q = 0, k = 0, and a = 0. The derived BH solution features
a dual-horizon distinction compared to the Schwarzschild BH. The curvature scalars do not
diverge as r → 0, indicating that the derived solution is non-singular. Additionally, we
have analyzed the thermodynamics of the AdS regular BHs by examining thermodynamic
parameters such as temperature, entropy, heat capacity, and Gibbs free energy. The local
and global stability are examined by analyzing the heat capacity and Gibbs free energy
diagrams. The heat capacity of the derived BH solution becomes infinite at the maximum
temperature.

Furthermore, we examined the phase transition of the AdS regular black hole solution,
considering the Cosmological constant (Λ) as the thermodynamic pressure (P = −Λ/8π).
The BH has been categorized into three phases based on the pressure in relation to the
critical pressure. Small stable BHs have been detected at pressures below the critical pressure
(P < Pc). For pressures exceeding the critical pressure (P > Pc), substantial stable BHs
were present, however in the critical pressure, intermediate unstable BHs developed. This
classification of phases demonstrated the intricacy of the BH phase structure under differing
pressure conditions.
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