Magnetic AdS Black Holes: Topological Thermodynamics and Photon Sphere Analysis

Document Type : Regular article

Authors

1 Department of Physics, Faculty of Basic Sciences, University of Mazandaran P. O. Box 47416-95447, Babolsar, Iran.

2 Center for Theoretical Physics, Khazar University, 41 Mehseti Street, Baku, AZ1096, Azerbaijan; Centre for Research Impact \& Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India

3 Institute of Theoretical Physics, National University of Uzbekistan, University Str. 4, Tashkent 100174, Uzbekistan; University of Tashkent for Applied Sciences, Str. Gavhar 1, Tashkent, 100149, Uzbekistan; Tashkent State Technical University, University Str. 1, Tashkent 100095, Uzbekistan; Urgench State University, Kh. Alimjan Str. 14, Urgench 221100, Uzbekistan

Abstract

We study the thermodynamic topology of magnetic AdS black holes, with a focus on topological charges and their configurations. Zero points in the system’s vector field correspond to topological charges, whose numbers change with key parameters. Across all free parameter ranges, the total topological charge consistently matches that of AdS Reissner-Nordström black holes. Also, we analyze photon spheres, revealing their role in black hole structures and resilience to parameter variations. Unstable photon spheres show distinctive signatures, showing black holes' spacetime geometry. This topological framework offers a systematic approach to understanding black hole stability, phase transitions, and potential astrophysical phenomena.

Keywords

Main Subjects

 

Article PDF

[1] J. D. Bekenstein, “Black holes and the second law”, Jacob Bekenstein: the conservative revolutionary, 303 (2020), DOI: https://doi.org/10.1142/9789811203961_0022
[2] D. Kubizňák, R. B. Mann, M. Teo, “Black hole chemistry: thermodynamics with Lambda”, Classical and Quantum Gravity 34(6), 063001 (2017), DOI: 10.1088/1361- 6382/aa5c69
[3] S. W. Hawking, D. N. Page, “Thermodynamics of black holes in anti-de Sitter space”, Communications in Mathematical Physics 87, 577 (1983), DOI: https://doi.org/10.1007/BF01208266
[4] J. Sadeghi et al., “Exploring the phase transition in charged Gauss–Bonnet black holes: a holographic thermodynamics perspectives”, General Relativity and Gravitation 56(8), 93 (2024), DOI: https://doi.org/10.1007/s10714-024-03285-x
[5] S.-W. Wei, Y.-X. Liu, “Topology of black hole thermodynamics”, Phys. Rev. D 105(10), 104003 (2022), DOI: https://doi.org/10.1103/PhysRevD.105.104003
[6] S.-W. Wei, Y.-X. Liu, R. B. Mann, “Black hole solutions as topological thermodynamic defects”, Phys. Rev. Lett. 129(19), 191101 (2022), DOI: https://doi.org/10.1103/PhysRevLett.129.191101
[7] J. Sadeghi et al., “Bardeen black hole thermodynamics from topological perspective”, Annals of Physics 455, 169391 (2023), DOI: https://doi.org/10.1016/j.aop.2023.169391
[8] J. Sadeghi et al., “Bulk-boundary and RPS Thermodynamics from Topology perspective”, Chinese Physics C (2024), DOI: 10.1088/1674-1137/ad53b9
[9] Y. Sekhmani et al., “Thermodynamic topology of Black Holes in F(R)-Euler-Heisenberg gravity’s Rainbow”, (2024), DOI: https://doi.org/10.48550/arXiv.2409.04997
[10] N. J. Gogoi, P. Phukon, “Thermodynamic topology of 4D dyonic AdS black holes in different ensembles”, Phys. Rev. D 108(6), 066016 (2023), DOI: https://doi.org/10.1103/PhysRevD.108.066016
[11] B. Hazarika, P. Phukon, “Thermodynamic topology of D = 4, 5 Horava Lifshitz black hole in two ensembles”, Nuclear Physics B 1006, 116649 (2024), DOI: https://doi.org/10.1016/j.nuclphysb.2024.116649
[12] J. Sadeghi et al., “Topology of Hayward-AdS black hole thermodynamics”, Physica Scripta 99(2), 025003 (2024), DOI: 10.1088/1402-4896/ad186b
[13] J. Sadeghi et al., “Thermodynamic topology and photon spheres in the hyperscaling violating black holes”, Astroparticle Physics 156, 102920 (2024), DOI: https://doi.org/10.1016/j.astropartphys.2023.102920
[14] B. Hazarika, P. Phukon, “Thermodynamic topology of black holes in f(R) gravity”, Progress of Theoretical and Experimental Physics 2024(4), 043E01 (2024), DOI: https://doi.org/10.1093/ptep/ptae035
[15] B. Hazarika, B. Eslam Panah, P. Phukon, “Thermodynamic topology of topological charged dilatonic black holes”, (2024), DOI: https://doi.org/10.1140/epjc/s10052-024- 13598-5
[16] H. Chen et al., “Thermal, topological, and scattering effects of an AdS charged black hole with an antisymmetric tensor background”, (2024), DOI: https://doi.org/10.48550/arXiv.2408.03090
[17] J. Sadeghi, M. A. S. Afshar, “The role of topological photon spheres in constraining the parameters of black holes”, Astroparticle Physics 102994 (2024), DOI: https://doi.org/10.1016/j.astropartphys.2024.102994
[18] S.-H. Dong et al., “Thermodynamic properties and topological charge of a static black hole in loop quantum gravity”, Physics of the Dark Universe 101962 (2025), DOI: https://doi.org/10.1016/j.dark.2025.101962
[19] M. A. S. Afshar, J. Sadeghi, “Mutual Influence of Photon Sphere and Non-Commutative Parameter in Various Non-Commutative Black Holes: Part I-Towards evidence for WGC”, (2024), DOI: https://doi.org/10.1016/j.dark.2025.101814
[20] B. Eslam Panah, B. Hazarika, P. Phukon, “Thermodynamic topology of topological black hole in F(R)-ModMax gravity’s rainbow”, Progress of Theoretical and Experimental Physics 2024(8), 083E02 (2024), DOI: https://doi.org/10.1093/ptep/ptae116
[21] J. Sadeghi et al., “Bulk-boundary and RPS Thermodynamics from Topology perspective”, Chinese Physics C (2024), DOI: 10.1088/1674-1137/ad53b9
[22] J. Sadeghi et al., “Thermodynamic Topology of Quantum Corrected AdS-ReissnerNordstrom Black Holes in Kiselev Spacetime”, Chinese Physics C (2024), DOI: 10.1088/1674-1137/ad711b
[23] B. Hazarika, P. Phukon, “Thermodynamic Properties and Shadows of Black Holes in f(R, T) Gravity”, (2024), DOI: https://doi.org/10.15302/frontphys.2025.035201
[24] F. Hosseinifar et al., “Quasinormal modes and topological characteristics of a Schwarzschild black hole surrounded by the Dehnen type dark matter halo”, EPJ C 85(8), 819 (2025), DOI: https://doi.org/10.1140/epjc/s10052-025-14549-4
[25] S.-H. Dong et al., “Thermodynamic properties and topological charge of a static black hole in loop quantum gravity”, Physics of the Dark Universe 2025, 101962, DOI: https://doi.org/10.1016/j.dark.2025.101962
[26] A. B. Brzo et al., “Thermodynamic Topology of AdS Black Holes within NonCommutative Geometry and Barrow Entropy”, Nuclear Physics B 116840 (2025), DOI: https://doi.org/10.1016/j.nuclphysb.2025.116840
[27] S. N. Gashti et al., “Thermodynamic topology and photon spheres of dirty black holes within non-extensive entropy”, Physics of the Dark Universe 101833 (2025), DOI: https://doi.org/10.1016/j.dark.2025.101833
[28] M. A. S. Afshar et al., “Topological Insights into Black Hole Thermodynamics: Non-Extensive Entropy in CFT framework”, EPJ C 85(4), 457 (2025), DOI: https://doi.org/10.1140/epjc/s10052-025-14173-2
[29] S. N. Gashti, B. Pourhassan, İ. Sakallı, “Thermodynamic topology and phase space analysis of AdS black holes through non-extensive entropy perspectives”, EPJ C 85(3), 305 (2025), DOI: https://doi.org/10.1140/epjc/s10052-025-14035-x
[30] S. N. Gashti, “Topology of Holographic Thermodynamics within Non-extensive Entropy”, JHAP 4(4), 59 (2024), DOI: https://doi.org/10.22128/jhap.2024.907.1101
[31] M. R. Alipour et al., “Topological classification and black hole thermodynamics”, Physics of the Dark Universe 42, 101361 (2023), DOI: https://doi.org/10.1016/j.dark.2023.101361
[32] A. Anand, S. N. Gashti, “Universality relation and thermodynamic topology with three-parameter entropy model”, Physics of the Dark Universe (2025), DOI: https://doi.org/10.1016/j.dark.2025.101916
[33] S. N. Gashti, B. Pourhassan, “Non-extensive Entropy and Holographic Thermodynamics: Topological Insights”, EPJ C 85, 435 (2025), DOI: https://doi.org/10.1140/epjc/s10052-025-14152-7
[34] M. A. S. Afshar, J. Sadeghi, “WGC as WCCC protector: The synergistic effects of various parameters in non-commutative black holes for identifying WGC candidate models”, Nuclear Physics B 1014, 116872 (2025), DOI: https://doi.org/10.1016/j.nuclphysb.2025.116872
[35] M. A. S. Afshar, J. Sadeghi, “Mechanisms behind the Aschenbach effect in non-rotating black hole spacetime”, Annals of Physics (2025), DOI: https://doi.org/10.1016/j.aop.2025.169953
[36] N. Heidari, I. P. Lobo, V. B. Bezerra, “Gravitational signatures of a nonlinear electrodynamics in f(R, T ) gravity”, (2025), DOI: https://doi.org/10.1088/1475- 7516/2025/09/015
[37] S.-W. Wei, “Topological charge and black hole photon spheres”, Phys. Rev. D 102(6), 064039 (2020), DOI: https://doi.org/10.1103/PhysRevD.102.064039
[38] P. V. P. Cunha, E. Berti, C. A. R. Herdeiro, “Light-ring stability for ultracompact objects”, Physical Review Letters 119(25), 251102 (2017), DOI: https://doi.org/10.1103/PhysRevLett.119.251102
[39] S. Noori Gashti et al., “Assessing WGC Compatibility in ModMax Black Holes via Photon Spheres Analysis and WCCC Validation”, (2025), DOI: https://doi.org/10.1140/epjc/s10052-025-14890-8
[40] M. R. Alipour et al., “Weak gravity conjecture validation with photon spheres of quantum corrected Reissner–Nordstrom–AdS black holes in Kiselev spacetime”, EPJ C 85(2), 138 (2025), DOI: https://doi.org/10.1140/epjc/s10052-025-14890-8
[41] J. Sadeghi, M. A. S. Afshar, “The role of topological photon spheres in constraining the parameters of black holes”, Astroparticle Physics 162, 102994 (2024), DOI: https://doi.org/10.1016/j.astropartphys.2024.102994
[42] M. R. Alipour et al., “Reconciling the Weak Gravity and Weak Cosmic Censorship Conjectures in Einstein-Euler-Heisenberg-AdS Black Holes”, (2025), DOI: https://doi.org/10.48550/arXiv.2504.03453
[43] A. B. Balakin, J. P. S. Lemos, A. E. Zayats, “Regular nonminimal magnetic black holes in spacetimes with a cosmological constant”, Phys. Rev. D 93(2), 024008 (2016), DOI: https://doi.org/10.1103/PhysRevD.93.024008
[44] R. H. Ali, Z.-Y. Tang, X.-M. Kuang, “Probing thermodynamic phase transitions by dynamics of timelike particle around a magnetic AdS black hole”, (2025), DOI: https://doi.org/10.48550/arXiv.2510.13552 
Volume 6, Issue 2
January 2026
Pages 56-69
  • Receive Date: 27 October 2025
  • Revise Date: 11 December 2025
  • Accept Date: 11 December 2025