Holographic and Thermodynamic Topological Perspectives on AdS Einstein-Power-Yang-Mills Black Holes with Generalized Entropy

Document Type : Regular article

Authors

1 Department of Mathematics, Kongu Engineering College, Erode-638060, India

2 Department of Electrical and Electronics Engineering, Assistant Professor, PERI Institute Of Technology, Chennai-600048, India

3 Canadian Quantum Research Center, 106-460 Doyle Ave, Kelowna, British Columbia V1Y 0C2 Canada

4 Department of Physics, Sar. C., Islamic Azad University, Sari, Iran

Abstract

In this work, we explore the holographic and thermodynamic topology of Anti–de Sitter (AdS) Einstein–Power–Yang–Mills (EPYM) black holes using both the bulk–boundary correspondence and the restricted phase space (RPS) frameworks. The study employs several non-extensive entropy models, including Barrow, R´enyi, Sharma–Mittal, Kaniadakis, and Tsallis–Cirto entropies. Within the bulk–boundary formalism, we find that the free deformation parameters strongly influence the classification of topo￾logical charges w. For the Barrow entropy, two distinct topological charges w = +1 and w = −1 appear as the deformation parameter increases, closely resembling the Bekenstein–Hawking limit. The R´enyi entropy exhibits a transition from three charges w = (+1, 0, −1) to a single charge w = +1 as the non-extensive parameter rises, while setting the deformation parame￾ter to zero yields two symmetric charges w = ±1. In the Sharma–Mittal framework, three characteristic regions emerge: for higher parameter ra￾tios, w = +1; for balanced ratios, w = 0; and for lower ratios, w = −1. The Kaniadakis entropy generally shows w = ±1 for most admissible K values, except at K = 0, where only w = +1 remains. The Tsallis–Cirto entropy displays two topological charges w = ±1 for small deformation parameters and a single charge w = +1 as the parameter approaches 0.9. Extending the analysis to the RPS framework reveals that, for R´enyi, Sharma–Mittal, and Tsallis–Cirto entropies, the topological charge remains invariant at w = +1, regardless of parameter variation. However, in the Barrow and Kaniadakis cases, the topological configuration evolves with increasing non￾extensivity, leading to distinct topological transitions in w. These findings provide deeper insights into the holographic and thermodynamic structure of non-extensive AdS black holes and highlight their phase evolution under generalized entropy formulations. The present work differs by (i) an explicit bulk boundary holographic mapping that tracks how the EPYM power q modifies boundary central-charge and chemical potential variables, (ii) ad￾ditional analytic expansions and parameter-range scans for q and entropy deformation parameters, and (iii) the introduction of supplementary stabil￾ity diagnostics and response-function tests that probe the robustness of the topology classification.

Keywords

Main Subjects

 

Article PDF

[1] S. N. Gashti, B. Pourhassan, and İ. Sakallı, “Thermodynamic topology and phase space analysis of AdS black holes through non-extensive entropy perspectives,” Eur. Phys. J. C 85, 305 (2025). DOI: https://doi.org/10.1140/epjc/s10052-025-14035-x
[2] S. N. Gashti and B. Pourhassan, “Non-extensive entropy and holographic thermodynamics: topological insights,” Eur. Phys. J. C 85, 435 (2025). DOI: https://doi.org/10.1140/epjc/s10052-025-14152-7
[3] S. Soroushfar, A. I. Kashkooli, H. Farahani, P. Rudra, and B. Pourhassan, “Geodesics and thermodynamics of Einstein–Power–Yang–Mills AdS black holes,” Phys. Dark Univ. 47, 101800 (2025). DOI: https://doi.org/10.1016/j.dark.2024.101800
[4] S. Bellucci and B. N. Tiwari, “Thermodynamic geometry and topological Einstein–Yang–Mills black holes,” Entropy 14, 1045 (2012). DOI: https://doi.org/10.3390/e14061045
[5] X. Y. Hu, K. J. He, and X. X. Zeng, “Holographic image features of an AdS black hole in Einstein-power-Yang-Mills gravity,” Chin. Phys. C 49, 065104 (2025). DOI: https://doi.org/10.48550/arXiv.2406.03083
[6] Y. Z. Du, H. H. Zhao, Y. Zhang, and Q. Gu, “Thermodynamics of Barrow Einsteinpower-Yang-Mills AdS black hole in the restricted phase space,” Chin. Phys. C 49, 075102 (2025). DOI: https://doi.org/10.1088/1674-1137/adc7e1
[7] S. Rani, A. Jawad, H. Moradpour, and A. Tanveer, “Tsallis entropy inspires geometric thermodynamics of specific black hole,” Eur. Phys. J. C 82, 713 (2022). DOI: https://doi.org/10.1140/epjc/s10052-022-10655-9
[8] M. A. S. Afshar, M. R. Alipour, S. N. Gashti, and J. Sadeghi, “Topological insights into black hole thermodynamics: non-extensive entropy in CFT framework,” Eur. Phys. J. C 85, 1 (2025). DOI: https://doi.org/10.1140/epjc/s10052-025-14173-2
[9] J. Sadeghi, M. A. S. Afshar, S. N. Gashti, and M. R. Alipour, “Thermodynamic topology of black holes from bulk-boundary, extended, and restricted phase space perspectives,” Ann. Phys. 460, 169569 (2024). DOI: https://doi.org/10.1016/j.aop.2023.169569
[10] S. P. Wu and S. W. Wei, “Thermodynamical topology of quantum BTZ black hole,” Phys. Rev. D 110, 024054 (2024). DOI: https://doi.org/10.1103/PhysRevD.110.024054.
[11] U. Zafar, K. Bamba, T. Rasheed, and K. Bhattacharya, “Thermodynamic analysis of black holes with cloud of strings and quintessence via Barrow entropy,” Phys. Lett. B 864, 139446 (2025). DOI: https://doi.org/10.1016/j.physletb.2025.139446
[12] C. W. Tong, B. H. Wang, and J. R. Sun, “Topology of black hole thermodynamics via Rényi statistics,” Eur. Phys. J. C 84, 826 (2024). DOI: https://doi.org/10.1140/epjc/s10052-024-13170-1
[13] B. Hazarika, A. Bhattacharjee, and P. Phukon, “Thermodynamics of rotating AdS black holes in Kaniadakis statistics,” Ann. Phys. 476, 169978 (2025). DOI: https://doi.org/10.1016/j.aop.2025.169978
[14] S. N. Gashti, İ. Sakallı, H. Farahani, P. Rudra, and B. Pourhassan, “Impact of loop quantum gravity on the topological classification of quantum-corrected black holes,” Universe 11, 247 (2025). DOI: https://doi.org/10.3390/universe11080247
[15] B. Hazarika and P. Phukon, “Topology of restricted phase space thermodynamics in Kerr–Sen–AdS black holes,” Nucl. Phys. B 1012, 116837 (2025). DOI: https://doi.org/10.1016/j.nuclphysb.2025.116837
[16] M. Zhang and J. Jiang, “Bulk-boundary thermodynamic equivalence: a topology viewpoint,” J. High Energy Phys. 6, 1 (2023). DOI: https://doi.org/10.1007/JHEP06%282023%29115
[17] A. Jawad and S. R. Fatima, “Thermodynamic geometries analysis of charged black holes with Barrow entropy,” Nucl. Phys. B 976, 115697 (2022). DOI: https://doi.org/10.1016/j.nuclphysb.2022.115697
[18] C. Promsiri, E. Hirunsirisawat, and W. Liewrian, “Thermodynamics and Van der Waals phase transition of charged black holes in flat spacetime via Rényi statistics,” Phys. Rev. D 102, 064014 (2020). DOI: https://doi.org/10.1103/PhysRevD.102.064014
[19] M. U. Shahzad, A. Mehmood, and A. Övgün, “Thermodynamic topological classification of D-dimensional dyonic AdS black holes with quasitopological electromagnetism in Einstein–Gauss–Bonnet gravity,” Eur. Phys. J. Plus 139, 1 (2024). DOI: https://doi.org/10.1140/epjp/s13360-024-05580-7
[20] S. Capozziello and M. Shokri, “Barrow entropies in black hole thermodynamics,” Eur. Phys. J. C 85, 200 (2025). DOI: https://doi.org/10.48550/arXiv.2501.12987
[21] D. Wu and S. Q. Wu, “Topological classes of thermodynamics of rotating AdS black holes,” Phys. Rev. D 107, 084002 (2023). DOI: https://doi.org/10.1103/PhysRevD.107.084002
[22] Y. Sekhmani et al., “Phase transitions and structure of 5D AdS black holes immersed in Chaplygin-like dark fluid from Kaniadakis statistics,” J. High Energy Astrophys. 44, 79 (2024). DOI: https://doi.org/10.1016/j.jheap.2024.09.004
[23] Y. Ladghami, B. Asfour, A. Bouali, A. Errahmani, and T. Ouali, “Barrow entropy and AdS black holes in RPS thermodynamics,” Phys. Dark Univ. 44, 101470 (2024). DOI: https://doi.org/10.1016/j.dark.2024.101470
[24] C. Tsallis, “Black hole entropy: a closer look,” Entropy 22, 17 (2019). DOI: 10.3390/e22010017
[25] A. B. Brzo, S. N. Gashti, B. Pourhassan, and S. Beikpour, “Thermodynamic topology of AdS black holes within non-commutative geometry and Barrow entropy,” Nucl. Phys. B 1012, 116840 (2025). DOI: https://doi.org/10.1016/j.nuclphysb.2025.116840
[26] G. G. Luciano and E. N. Saridakis, “P–v criticalities, phase transitions and geometrothermodynamics of charged AdS black holes from Kaniadakis statistics,” J. High Energy Phys. 12, 1 (2023). DOI: 10.1007/JHEP12(2023)014.
[27] N. Ramya and M. Deivanayaki, “Reputation of microorganisms on Carreau nanofluid flow through a Darcy–Forchheimer porous medium in magnetohydrodynamic systems,” J. Nanofluids 14, 251 (2025).
[28] N. Ramya and M. Deivanayaki, “Numerical Simulation of Casson Micropolar Fluid Flow Over an Inclined Surface Through Porous Medium,” J. Mines, Metals & Fuels 71, 11 (2023). DOI: 10.18311/jmmf/2023/36269
[29] N. Ramya, M. Deivanayaki, P. Kavya, K. Loganathan, and S. Eswaramoorthi, “Influence of homogeneous–heterogeneous reactions on micropolar nanofluid flow over an exponentially stretching surface with the Cattaneo–Christov heat flux model,” Discov. Appl. Sci. 7, 554 (2025). DOI: https://doi.org/10.1007/s42452-025-07037-7
[30] G. Muhiuddin, N. Ramya, B. Pourhassan, H. Rashmanlou, F. Maqsood, and N. Aldossari, “Thermal and Bioconvective Analysis of Williamson Fluid over a Porous Curved Stretching Surface under Homogeneous–Heterogeneous Reactions,” Case Stud. Therm. Eng. 106774 (2025). DOI: https://doi.org/10.1016/j.csite.2025.106774
[31] N. Ramya, M. Deivanayaki, and S. Pandurengan, “Thermophoresis and Brownian motion effects on the Casson ternary hybrid nanofluid over a horizontal plate containing gyrotactic microorganisms,” Chem. Phys. Impact 10, 100887 (2025). DOI: https://doi.org/10.1016/j.chphi.2025.100887
[32] J. Sadeghi, S. N. Gashti, M. R. Alipour, and M. A. S. Afshar, “Bardeen black hole thermodynamics from topological perspective,” Ann. Phys. 455, 169391 (2023). DOI: https://doi.org/10.1016/j.aop.2023.169391
[33] Z. Q. Chen and S. W. Wei, “Thermodynamical topology with multiple defect curves for dyonic AdS black holes,” Eur. Phys. J. C 84, 1294 (2024). DOI: https://doi.org/10.1140/epjc/s10052-024-13620-w
[34] Y. S. Myung, Y. W. Kim, and Y. J. Park, “Thermodynamics of regular black hole,” Gen. Relativ. Gravit. 41, 1051 (2009). DOI: 10.1007/s10714-008-0690-9
[35] C. Liu and J. Wang, “Topological natures of the Gauss-Bonnet black hole in AdS space,” Phys. Rev. D 107, 064023 (2023). DOI: https://doi.org/10.1103/PhysRevD.107.064023
[36] J. D. Barrow, “The area of a rough black hole,” Phys. Lett. B, 808, 135643 (2020). DOI: https://doi.org/10.1016/j.physletb.2020.135643
[37] G. Kaniadakis, “Statistical mechanics in the context of special relativity,” Phys. Rev. E, 66, 056125 (2002). DOI: https://doi.org/10.1103/PhysRevE.66.056125
[38] A. Rényi, “On measures of entropy and information,” Proc. Fourth Berkeley Symp. Math. Statist. Prob., 1, 547 (1961).
[39] B. D. Sharma and D. P. Mittal, “New nonadditive measures of entropy for discrete probability distributions,” J. Math. Sci., 10, 28 (1975).
[40] C. Tsallis and L. J. L. Cirto, “Black hole thermodynamical entropy,” Eur. Phys. J. C, 73, 2487 (2013). DOI: https://doi.org/10.1140/epjc/s10052-013-2487-6
[41] S. W. Wei, Y. X. Liu, and R. B. Mann, “Black hole solutions as topological thermodynamic defects,” Phys. Rev. Lett., 129(19), 191101 (2022). DOI: https://doi.org/10.1103/PhysRevLett.129.191101
[42] S. W. Wei and Y. X. Liu, “Topology of black hole thermodynamics,” Phys. Rev. D, 105(10), 104003 (2022). DOI: https://doi.org/10.1103/PhysRevD.105.104003
[43] J. M. Maldacena, “The large-N limit of superconformal field theories and supergravity,” Int. J. Theor. Phys. 38, 1117 (1999). DOI: https://doi.org/10.1023/A%3A1026654312961
[44] E. Witten, “Anti–de Sitter space and holography,” Adv. Theor. Math. Phys. 2, 253 (1998). DOI: https://doi.org/10.48550/arXiv.hep-th/9802150
[45] D. Kubizňák, R. B. Mann, and M. Teo, “Black hole chemistry: thermodynamics with Λ,” Class. Quantum Grav. 34, 163001 (2017). DOI: https://doi.org/10.1088/1361- 6382/aa5c69 
Volume 6, Issue 1
December 2025
Pages 98-125
  • Receive Date: 04 November 2025
  • Revise Date: 16 November 2025
  • Accept Date: 08 December 2025