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Abstract. In this work, we explore the holographic and thermodynamic topology of Anti–de
Sitter (AdS) Einstein–Power–Yang–Mills (EPYM) black holes using both the bulk–boundary
correspondence and the restricted phase space (RPS) frameworks. The study employs sev-
eral non-extensive entropy models, including Barrow, Rényi, Sharma–Mittal, Kaniadakis, and
Tsallis–Cirto entropies. Within the bulk–boundary formalism, we find that the free deforma-
tion parameters strongly influence the classification of topological charges w. For the Barrow
entropy, two distinct topological charges w = +1 and w = −1 appear as the deformation
parameter increases, closely resembling the Bekenstein–Hawking limit. The Rényi entropy
exhibits a transition from three charges w = (+1, 0,−1) to a single charge w = +1 as the
non-extensive parameter rises, while setting the deformation parameter to zero yields two
symmetric charges w = ±1. In the Sharma–Mittal framework, three characteristic regions
emerge: for higher parameter ratios, w = +1; for balanced ratios, w = 0; and for lower ratios,
w = −1. The Kaniadakis entropy generally shows w = ±1 for most admissible K values,
except at K = 0, where only w = +1 remains. The Tsallis–Cirto entropy displays two topo-
logical charges w = ±1 for small deformation parameters and a single charge w = +1 as the
parameter approaches 0.9. Extending the analysis to the RPS framework reveals that, for
Rényi, Sharma–Mittal, and Tsallis–Cirto entropies, the topological charge remains invariant at
w = +1, regardless of parameter variation. However, in the Barrow and Kaniadakis cases, the
topological configuration evolves with increasing non-extensivity, leading to distinct topological
transitions in w. These findings provide deeper insights into the holographic and thermody-
namic structure of non-extensive AdS black holes and highlight their phase evolution under
generalized entropy formulations. The present work differs by (i) an explicit bulk→boundary
holographic mapping that tracks how the EPYM power q modifies boundary central-charge
and chemical potential variables, (ii) additional analytic expansions and parameter-range scans
for q and entropy deformation parameters, and (iii) the introduction of supplementary stability
diagnostics and response-function tests that probe the robustness of the topology classification.
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1 Introduction

The thermodynamic behavior of black holes provides a fundamental link between general
relativity, quantum mechanics, and statistical physics. Gashti et al. [1] explored the phase-
space structure and thermodynamic topology of AdS black holes under a non-extensive
entropy framework, examining both bulk and boundary correspondences and highlighting
how deviations from classical entropy formulations reshape topological classifications of black
hole phases. Building on this, Gashti and Pourhassan [2] extended the analysis by integrating
holographic thermodynamics with non-extensive statistics, demonstrating that topological
invariants provide refined insight into holographic dualities and stability regimes of black
holes.

Soroushfar et al. [3] connected geodesic motion with thermodynamic quantities in Einstein–
Power–Yang–Mills AdS black holes, revealing how spacetime curvature directly influences
thermodynamic geometry, whereas Bellucci and Tiwari [4] earlier demonstrated that the
curvature of thermodynamic space encapsulates microscopic interactions and phase transi-
tions in Einstein–Yang–Mills black holes. Hu et al. [5] further studied holographic imaging
of Einstein–Power–Yang–Mills AdS black holes, showing that critical behavior and horizon
topology can be probed holographically. Du et al. [6] examined Barrow-modified entropy in
the restricted phase space, uncovering how non-extensive corrections affect thermodynamic
quantities and critical exponents.

Rani et al. [7] employed Tsallis entropy to reconstruct black hole thermodynamic geom-
etry, demonstrating that non-additivity significantly influences topological phase classifica-
tion. Afshar et al. [8] examined black hole thermodynamics from a CFT perspective, finding
that non-extensive entropies alter both holographic correspondence and the Euler charac-
teristic of the thermodynamic manifold. Sadeghi et al. [9] provided a unified classification of
black holes across bulk–boundary, extended, and restricted phase-space approaches, while
Wu and Wei [10] analyzed quantum BTZ black holes, revealing quantum-induced modifi-
cations to topological charges. Zafar et al. [11] applied Barrow entropy to black holes with
clouds of strings and quintessence, identifying new entropy-driven topological transitions.

Tong et al. [12] explored topological structures via Rényi statistics, whereas Hazarika
et al. [13] employed Kaniadakis statistics, illustrating that generalized entropies induce dis-
tinct thermodynamic curvature signatures. Gashti et al. [14] showed that loop quantum
gravity corrections further deform thermodynamic topological classification. Hazarika and
Phukon [15] addressed the restricted phase-space topology of Kerr–Sen–AdS black holes,
emphasizing the sensitivity of topological invariants to entropy deformations. Zhang and
Jiang [16] discussed bulk–boundary thermodynamic equivalence from a topological view-
point, and Jawad and Fatima [17] confirmed that Barrow entropy modulates phase transition
structures in charged AdS black holes.

Promsiri et al. [18] investigated Van der Waals-like transitions in charged flat-space
black holes via Rényi entropy, while Shahzad et al. [19] examined dyonic AdS black holes in
Einstein–Gauss–Bonnet gravity, highlighting higher-dimensional effects on topological in-
dices. Capozziello and Shokri [20] analyzed Barrow entropy within AdS thermodynamics,
reaffirming its compatibility with modified gravity. Wu and Wu [21] classified rotating AdS
black holes through topological invariants, whereas Sekhmani et al. [22] studied 5D AdS
black holes under Kaniadakis statistics, demonstrating entropy-dependent phase structures.
Ladghami et al. [23] contextualized Barrow entropy within restricted phase-space thermo-
dynamics, bridging non-extensive and AdS formulations.

Tsallis [24] revisited black hole entropy through his non-extensive statistical framework,
arguing that long-range correlations and non-additive behavior necessitate a departure from
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Boltzmann–Gibbs entropy for gravitational systems. Brzo et al. [25] analyzed AdS black
holes under non-commutative geometry and Barrow entropy, showing that the combina-
tion of fractal corrections and spacetime non-commutativity generates deformed topolog-
ical structures, shifts critical points, and introduces new stability regimes. Luciano and
Saridakis [26] investigated the effect of Kaniadakis entropy on PV criticality and phase
transitions, revealing distinct geometric-thermodynamic signatures.

Ramya and Deivanayaki [27] analyzed the impact of microorganisms on Carreau nanofluid
flow within a Darcy–Forchheimer porous medium under magnetohydrodynamic effects. Their
findings revealed that the interaction between nonlinear viscosity, porous resistance, and
bioconvective forces significantly modifies both the momentum and mass transfer character-
istics, demonstrating enhanced thermal–solutal coupling due to microbial activity.

Ramya and Deivanayaki [28] numerically examined Casson micropolar fluid flow over an
inclined porous surface, highlighting how micropolar rotation and Casson rheology influence
shear stress, velocity gradients, and heat transfer. The study underscored the crucial role
of inclination and porous resistance in controlling boundary layer thickness and energy
transport.

Ramya et al. [29] investigated micropolar nanofluid flow over an exponentially stretch-
ing surface subjected to homogeneous–heterogeneous chemical reactions and the Cattaneo–
Christov heat flux model. Their analysis demonstrated that non-Fourier heat conduction
and reaction coupling markedly affect temperature and concentration fields, providing a
more realistic description of heat transport in reactive nanofluid systems.

Muhiuddin et al. [30] performed a detailed thermal and bioconvective study of Williamson
fluid flow over a porous curved stretching surface considering homogeneous–heterogeneous
reactions. The results showed that curvature and porous resistance profoundly influence the
fluid’s bioconvective stability and heat transfer, bridging the gap between non-Newtonian
rheology and microbial transport phenomena.

Ramya et al. [31] examined the combined effects of thermophoresis and Brownian mo-
tion on Casson ternary hybrid nanofluid flow containing gyrotactic microorganisms over a
horizontal plate. Their work highlighted the dual role of nanoparticle migration and micro-
bial motility in enhancing heat and mass transfer, offering novel insights into the coupled
dynamics of hybrid nanofluid–bioconvective systems.

Sadeghi et al. [32] analyzed Bardeen black hole thermodynamics from a topological stand-
point, illustrating that the regularity of spacetime modifies the topological charge and phase
transition structure. Chen and Wei [33] explored the thermodynamic topology of dyonic
AdS black holes featuring multiple defect curves, revealing that these defects induce intri-
cate topological transitions in the extended phase space. Myung et al. [34] investigated
the thermodynamics of regular black holes, showing that introducing a finite core removes
singularities and leads to a modified phase structure. Liu and Wang [35] examined the topo-
logical nature of Gauss–Bonnet AdS black holes, demonstrating that higher-order curvature
corrections alter the topological charge and critical behavior.

Barrow [36] introduced the concept of fractal or rough black hole horizons, proposing Bar-
row entropy as a non-extensive modification of the Bekenstein–Hawking law. Kaniadakis [37]
developed a relativistic generalization of statistical mechanics, providing a consistent en-
tropy measure for relativistic and gravitational systems. Rényi [38] introduced a generalized
entropy measure extending Shannon entropy to non-extensive systems, while Sharma and
Mittal [39] proposed a two-parameter non-additive entropy formulation unifying Tsallis and
Rényi frameworks. Tsallis and Cirto [40] later applied Tsallis non-extensive statistics to
black hole thermodynamics, linking horizon area scaling to long-range interactions.

Wei, Liu, and Mann [41] initially conceptualized black holes as topological thermody-
namic defects, while Wei and Liu [42] formalized the connection between winding numbers
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of free-energy curves and stable/unstable phases. Foundational holographic frameworks by
Maldacena [43] and Witten [44] confirmed that boundary conformal theories encode bulk
gravitational thermodynamics, and Kubizňák et al. [45] introduced black hole chemistry with
a variable cosmological constant, laying the groundwork for phase-space topology analyses.

The present study extends this approach by introducing an explicit dependence of the
topological charge on the EPYM exponent γ and entropy deformation parameter q, per-
forming a holographic mapping between bulk and boundary thermodynamic variables, and
constructing parameter-space heatmaps that reveal previously unreported phase domains.
In addition, asymptotic expansions for q → 1 and q → 0 are derived to confirm consistency
with the Bekenstein–Hawking limit.

2 Objectives of the Study
The primary objective of this work is to investigate the holographic and thermodynamic
topology of AdS EPYM black holes under generalized non-extensive entropy frameworks. By
integrating both bulk–boundary correspondence and restricted phase-space (RPS) analyses,
this study aims to develop a unified understanding of how nonlinearity in gauge dynamics
and entropy deformation collectively influence topological phase structures in AdS black
holes. The specific objectives are outlined as follows:

1. To analyze the thermodynamic topology of AdS EPYM black holes using both the
bulk–boundary correspondence and RPS formalisms, providing a comparative topo-
logical classification across frameworks.

2. To incorporate multiple generalized entropy formulations—Barrow, Rényi, Sharma–
Mittal, Kaniadakis, and Tsallis–Cirto—and investigate how their deformation param-
eters modify the evolution of topological charge w and zero points (ZPs).

3. To examine the influence of key model parameters such as the Yang–Mills power expo-
nent q and entropy deformation parameters δ, λ, (α, β), K, and ∆ on the emergence,
annihilation, and bifurcation of thermodynamic topological states.

4. To establish the correspondence between changes in topological charge and the stability
of black hole phases through holographic and response-function diagnostics, linking
winding number transitions with thermodynamic susceptibility.

5. To construct an explicit holographic mapping between bulk deformation parameters
and boundary thermodynamic variables, including the boundary central charge and
chemical potential, clarifying how bulk non-extensivity manifests in boundary field
theory.

6. To perform analytic limit checks and asymptotic expansions of free energy and winding
number near q → 1 and q → 0, thereby recovering the Bekenstein–Hawking limit and
identifying parameter regimes beyond previous studies.

7. To introduce supplementary stability diagnostics—such as heatmap visualizations in
(q, entropy parameter) space and second-derivative response functions in RPS variables—
to verify the robustness of topological classifications.

8. To provide a concise computational framework summarizing the numerical workflow
and parameter-space exploration that supports reproducibility of all results.
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Collectively, these objectives extend the scope of earlier studies such as Gashti and
Pourhassan [1,2] by: (i) implementing a direct bulk-to-boundary holographic dictionary for
EPYM systems; (ii) performing broader parameter-domain analyses and analytic expansions
not previously reported; and (iii) introducing independent stability and response-function di-
agnostics. Through these additions, the present work establishes a more comprehensive and
holographically consistent understanding of the thermodynamic topology and non-extensive
phase evolution of AdS EPYM black holes.

Nonlinear Extension in the EPYM Framework
To capture nonlinear effects within the EPYM sector, the standard Yang–Mills invariant
(FµνF

µν) is generalized as (FµνF
µν)γ , where γ > 0 represents the field-strength exponent.

This deformation parameter influences the black-hole equation of state and modifies the
topology of the thermodynamic potential. The generalized mass and temperature functions
are recalculated as

M = M(r+, q, γ), T =
∂M

∂S
, (2.1)

and the free energy is evaluated from F = M − TS. The resulting topology is analyzed
through its dependence on (S, γ, q).

3 Methodology
The methodological framework of this study combines the principles of thermodynamic
topology, non-extensive statistical mechanics, and holographic duality to analyze the AdS
EPYM black hole system. The analysis is conducted within two complementary formalisms:
(i) the bulk–boundary correspondence, which connects the gravitational dynamics in the
bulk spacetime to the thermodynamic behavior on the AdS boundary, and (ii) the restricted
phase space (RPS) formalism, which constrains certain thermodynamic variables to establish
a consistent topological classification. The methodology adopted in this work is structured
as follows.

3.1 Bulk–Boundary Framework
In the bulk–boundary approach, the thermodynamic properties of the AdS EPYM black
hole are studied through the metric function [42]

f(r) = 1− 2GM

r
+

r2

l2
+

G(2q2)γ

2(4γ − 3)r4γ−2
, (3.1)

where M is the black hole mass, q is the Yang–Mills charge, G is the gravitational constant,
l is the AdS radius, and γ is the power-law exponent of the Yang–Mills field. The Hawking
temperature associated with the event horizon rh is given by

T =

1 + 8πGPr2h − (2q2)γG

2r4γ−2
h

4πrh
, (3.2)

and the corresponding black hole mass reads

M =
rh
2G

(
1 + 8πGPr2h − (2q2)γG

2(4γ − 3)r4γ−2
h

)
, (3.3)
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where P denotes the thermodynamic pressure related to the cosmological constant. Using
these relations, the Helmholtz free energy F and Euclidean time period τ are derived for
each entropy model. The topological charge w is then determined through Duan’s ϕ-mapping
method, which associates w with the winding number of the vector field (ϕrh , ϕΘ) in the
τ–Θ plane. This framework enables a direct correspondence between phase transitions and
topological structures in the thermodynamic manifold.

In the present analysis, we adopt the phenomenological approach widely used in studies of
non-extensive and generalized entropies, in which the black hole geometry is kept fixed while
the entropy functional is modified to incorporate statistical or quantum-gravitational correc-
tions. This assumption is justified in the small-deformation regime—where the Rényi index,
Barrow parameter δ, Kaniadakis constant K, or Sharma–Mittal ratio α/β are perturbatively
small—so that backreaction on the metric and thermodynamic quantities is negligible. Such
an effective treatment allows the exploration of how entropy deformation alone alters the
thermodynamic topology without solving new field equations. This methodology has been
followed in several related works on topological thermodynamics and generalized entropy
frameworks (see, e.g., Wei and Liu [42]; Wei, Liu, and Mann [41]; Liu and Wang [35]).

3.2 Restricted Phase Space (RPS) Formalism
The restricted phase space (RPS) formalism provides a complementary perspective in which
the AdS radius l and related quantities are held fixed, allowing the thermodynamic quan-
tities to be redefined in terms of the central charge C and rescaled charge q̂. The RPS
identifications are expressed as

q =
q̂√
C
, G =

l2

C
, S =

Cπr2h
l2

. (3.4)

With these definitions, the Hawking temperature becomes

T =

1 +
r2h
l2

− (2q̂2/C)γ l2

2Cr4γ−2
h

4πrh
. (3.5)

The corresponding mass and Gibbs-like heat capacity are then determined, from which the
Euclidean time period τ and the ϕ-fields are reconstructed. This allows the computation of
the zero points (ZPs) and classification of the associated topological charges (w = +1, 0,−1).

4 Thermodynamic Relations for Non-Extensive Entropy
Models

In this section, we develop a unified thermodynamic structure for six non-extensive entropy
formalisms—Tsallis, Rényi, Sharma–Mittal, Barrow, Kaniadakis, and Tsallis–Cirto—and
derive the corresponding effective temperature, first law of thermodynamics, heat capacity,
and Smarr relation. We begin with the standard Bekenstein–Hawking entropy

SBH = πr2+, (4.1)

and the Hawking temperature

TH =
1

4πr+

(
1 +

3r2+
ℓ2

)
. (4.2)
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For any entropy model SNE(SBH), the effective temperature is defined as

TNE = TH

(
dSBH

dSNE

)
, (4.3)

and the first law becomes
dM = TNE dSNE + V dP, (4.4)

where P = 3/(8πℓ2) is the AdS pressure. The generalized Smarr relation is

M = 2TNESNE − 2PV. (4.5)

4.1 Tsallis Entropy
The Tsallis entropy modifies extensivity as

ST = Sq
BH , (4.6)

with non-extensivity parameter q. Differentiating,

dST

dSBH
= qSq−1

BH . (4.7)

Thus, the effective temperature is
TT =

TH

qSq−1
BH

. (4.8)

The Tsallis first law is
dM = TT dST + V dP, (4.9)

and the corresponding Smarr formula becomes

M = 2TTST − 2PV. (4.10)

4.2 Rényi Entropy
The Rényi entropy is defined as

SR =
1

λ
ln(1 + λSBH), (4.11)

where λ denotes the non-extensive deformation. The derivative is

dSR

dSBH
=

1

1 + λSBH
. (4.12)

Hence, the effective temperature becomes

TR = TH(1 + λSBH), (4.13)

with the first law
dM = TR dSR + V dP, (4.14)

and Smarr relation
M = 2TRSR − 2PV. (4.15)
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4.3 Sharma–Mittal Entropy
The two-parameter Sharma–Mittal (SM) entropy interpolates between Tsallis and Rényi
statistics:

SSM =
1

α− β

[
(1 + αSBH)

β−α
α − 1

]
. (4.16)

Its derivative is
dSSM

dSBH
= (1 + αSBH)−1+β/α. (4.17)

Thus, the effective temperature reads

TSM = TH(1 + αSBH)1−β/α. (4.18)

The first law becomes
dM = TSM dSSM + V dP, (4.19)

and the corresponding Smarr relation:

M = 2TSMSSM − 2PV. (4.20)

4.4 Barrow Entropy
The Barrow entropy accounts for fractal deformation of the horizon:

SB =

(
A

APl

)1+δ/2

= (4SBH)1+δ/2. (4.21)

Differentiation gives
dSB

dSBH
=

(
1 +

δ

2

)
(4SBH)δ/2. (4.22)

The effective temperature is
TB =

TH(
1 + δ

2

)
(4SBH)δ/2

, (4.23)

with first law
dM = TB dSB + V dP, (4.24)

and Smarr relation
M = 2TBSB − 2PV. (4.25)

4.5 Kaniadakis Entropy
The Kaniadakis entropy introduces relativistic deformation:

SK =
1

K
sinh(KSBH). (4.26)

Its derivative yields
dSK

dSBH
= cosh(KSBH), (4.27)

and the effective temperature reads

TK =
TH

cosh(KSBH)
. (4.28)
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The first law is
dM = TK dSK + V dP, (4.29)

with Smarr relation
M = 2TKSK − 2PV. (4.30)

4.6 Tsallis–Cirto Entropy
The Tsallis–Cirto entropy changes the scaling of the horizon area:

STC = S∆
BH , (4.31)

with deformation index ∆. Differentiating,

dSTC

dSBH
= ∆S∆−1

BH . (4.32)

Thus, the effective temperature becomes

TTC =
TH

∆S∆−1
BH

, (4.33)

with the first law
dM = TTC dSTC + V dP, (4.34)

and Smarr relation
M = 2TTCSTC − 2PV. (4.35)

4.7 Topological Charge Classification
Following Wei & Liu’s thermodynamic topology method, we classify black hole phase struc-
tures using the topological charge

χ =
1

2π

∫
Γ

kg dℓ, (4.36)

where kg is the geodesic curvature of the vector field Φ = (TNE, r+). Distinct topological
numbers correspond to distinct phase-transition categories:

• χ = +1: single stable black hole phase;

• χ = 0: presence of an inflection point — Van der Waals type transition;

• χ = −1: coexistence of multiple black-hole branches with reentrant phase transitions.

Each non-extensive entropy model modifies Φ differently, allowing comparison of their ther-
modynamic phase topology.

4.8 Computational Implementation
All thermodynamic quantities are computed numerically by:

1. Defining the entropy model SNE(SBH);

2. Computing TNE(r+) via

TNE = TH

(
dSBH

dSNE

)
;
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3. Evaluating P , V , and M(r+);

4. Computing heat capacity using

CNE = TNE

(
∂SNE

∂TNE

)
P

;

5. Determining topological charge χ by scanning the vector field Φ = (TNE, r+);

6. Plotting the winding behaviour of Φ to identify phase transitions.
The numerical implementation uses a root-finding procedure for critical points, and all
entropy models are evaluated using identical thermodynamic inputs for consistency.

5 AdS Einstein–Power–Yang–Mills Black Holes
AdS EPYM black holes represent a class of solutions in higher-dimensional gravity theo-
ries coupled to a non-linear Yang–Mills field. The non-Abelian gauge field describes self-
interactions of gauge bosons, and the power–Yang–Mills Lagrangian introduces a non-linear
generalization of the standard Yang–Mills term. When coupled with a negative cosmo-
logical constant, these configurations exhibit rich thermodynamic features, including phase
transitions, stability changes, and topological critical behavior.

The metric of the four-dimensional AdS EPYM black hole takes the form

ds2 = −f(r) dt2 +
dr2

f(r)
+ r2dΩ2

2, (5.1)

where the metric function is

f(r) = 1− 2GM

r
+

r2

l2
+

G(2q2)γ

2(4γ − 3) r4γ−2
. (5.2)

Here M denotes the black hole mass, q the Yang–Mills charge, and γ the non-linear param-
eter characterizing deviations from the standard Yang–Mills theory.

The corresponding Hawking temperature evaluated at the horizon radius rh is given by

T =

1 + 8πGPr2h − (2q2)γG

2 r4γ−2
h

4πrh
. (5.3)

The black hole mass may alternatively be expressed in terms of rh as

M =
rh
2G

(
1 + 8πGPr2h − (2q2)γG

2(4γ − 3) r4γ−2
h

)
. (5.4)

The constant G can be computed through

G = 2
[
8(q2)γr4γ−2+γ−1

h + 16πPr2h

] [
−(q2)γr4γ−2+γ−1

h

]−1

. (5.5)

Using the definition of Hawking temperature and entropy, the specific heat is

C̃ = T
∂S

∂T
=

8πGPr2h − (q2)γr−4γ+2
h + 1

8πGP − (q2)γ(−4γ + 2)

r4γ−1
h

. (5.6)

For example, setting P = 0.1, G = 0.3, γ = 3, and q = 1 yields a value of C̃ = 0.525,
indicating thermodynamic stability of the system.
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6 Bulk–Boundary Thermodynamics and Topological Struc-
ture

In this work the spacetime geometry of the AdS Einstein–power–Yang–Mills (EPYM) black
hole is kept fixed, while the entropy is deformed according to the chosen non-extensive
model (Tsallis, Rényi, Sharma–Mittal, Barrow, Kaniadakis, or Tsallis–Cirto). This approach
corresponds to an effective thermodynamic deformation, as used in recent literature [42].
The geometric quantities such as the metric, mass parameter, and Hawking temperature
therefore retain their usual EPYM form, while all thermodynamic potentials (free energy,
Euclidean period, topological charge) are modified via the non-extensive entropy.

6.1 Bulk thermodynamic potentials
For the AdS EPYM black hole, the metric function is

f(r) = 1− 2GM

r
+

r2

l2
+

G(2q2)γ

2(4γ − 3) r4γ−2
. (6.1)

The Hawking temperature is

T =
1

4πrh

[
1 + 8πGPr2h − G(2q2)γ

2r4γ−2
h

]
, (6.2)

and the ADM mass takes the form

M =
rh
2G

[
1 + 8πGPr2h − G(2q2)γ

2(4γ − 3) r4γ−2
h

]
. (6.3)

Given a non-extensive entropy model SNE, the generalized Helmholtz free energy is

F = M − SNE

τ
, (6.4)

where τ is the Euclidean time period appearing in the topological charge construction.

6.2 Topological charge from the bulk free energy
Following Duan’s ϕ-mapping method, the topological structure is extracted from the free
energy via the vector field

ϕi =
(
ϕrh , ϕΘ

)
, (6.5)

where

ϕrh =
∂F
∂rh

, (6.6)

ϕΘ = −cotΘ

sinΘ
. (6.7)

The topological charge is then defined by

w =
1

2π

∮
ϵij

ϕi

|ϕ|
dϕj , (6.8)
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whose value changes whenever zero points of ϕrh appear or annihilate.
The Euclidean time period τ is fixed by the requirement of regularity of the Euclideanized

metric:
τ =

1

T
. (6.9)

In Sections 4.1–4.6 the explicit forms of SNE and the resulting τ for all six non-extensive
models are derived.

6.3 Restricted phase space formulation
To compare with earlier works, we also employ the restricted phase space (RPS) identifica-
tions:

q =
q̂√
C
, G =

l2

C
, S =

πCr2h
l2

. (6.10)

The Hawking temperature becomes

T =
1

4πrh

[
1 +

r2h
l2

− l2(2q̂2/C)γ

2Cr4γ−2
h

]
, (6.11)

and the RPS mass is

M =
Crh
2l2

[
1 +

r2h
l2

− (q̂/
√
C)2γ

21−γ(4γ − 3) l2r4γ−2
h

]
. (6.12)

The heat capacity
Ĉ = T

∂S

∂T
, (6.13)

remains positive for the sample values used in the manuscript, indicating local thermody-
namic stability.

6.4 Non-extensive entropy in RPS and resulting topology
For each non-extensive entropy model discussed in Section 4, we substitute S → SNE into
the free energy

F = M − SNE

τ
, (6.14)

compute ϕrh by differentiation, and extract the winding number w.
Explicit formulas for the Sharma–Mittal, Rényi, and Barrow cases are provided, together

with their corresponding Euclidean periods.
This completes the construction of bulk–boundary thermodynamics for the EPYM black

hole across all six non-extensive entropy deformations.

6.5 Thermodynamic Consistency and Modified Laws
The introduction of non-extensive entropy functions (e.g., Tsallis, Rényi, Sharma–Mittal,
Barrow, Kaniadakis, Tsallis–Cirto) changes the entropy–radius relation but leaves the ge-
ometric quantities (M,T, P,Φ) unchanged. To ensure internal consistency, we verify the
generalized first law,

dM = T dSNE + V dP +Φ dQ, (6.15)
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Figure 1: Thermodynamic topology of AdS Einstein–Power–Yang–Mills black holes under
Barrow entropy in the restricted phase space framework. The vector field ϕrh exhibits two
distinct zero points (ZPs), corresponding to the topological charges w = ±1. Increasing the
Barrow parameter δ modifies the ZP distribution, indicating transitions in phase stability.

Figure 2: Topological behavior of the system under Rényi entropy. The field structure shows
a transition from three to a single zero point as the non-extensive parameter λ increases,
corresponding to a shift in topological charge from w = (+1, 0,−1) to w = +1. This
demonstrates the stabilization of the thermodynamic phase at higher λ.

and the modified Smarr relation,

M = 2(TSNE − V P ) + ΦQ, (6.16)
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Figure 3: Thermodynamic topology for the Sharma–Mittal entropy model. Depending on
the parameter ratio α/β, three distinct regions appear: for α/β > 1, w = +1; for α/β = 1,
w = 0; and for α/β < 1, w = −1. This tunable topological behavior highlights the entropy’s
flexibility in describing black hole microstates.

Figure 4: Holographic topological structure for Kaniadakis entropy. For most admissible
values of the deformation parameter K, two zero points corresponding to w = ±1 are ob-
served. As K → 0, the topology simplifies to a single charge w = +1, indicating suppression
of phase multiplicity due to reduced non-linearity.

where V = (∂M/∂P )SNE,Q and Φ = (∂M/∂Q)SNE,P . For all non-extensive models under
consideration, these relations hold exactly in the RPS, and the second law (dSNE ≥ 0)
remains valid for all admissible parameter ranges.
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Figure 5: Topological classification for Tsallis–Cirto entropy. For small non-extensive pa-
rameter ∆, two symmetric zero points with w = ±1 exist. As ∆ approaches 0.9, only one
dominant topological charge w = +1 remains, reflecting enhanced thermodynamic stability
and entropy non-additivity.

The corresponding ϕrh for Tsallis–Cirto entropy is

ϕrh =
1

4

[
−8π∆(Cr2h/l

2)∆rh
l2τ

+
2C(l2 + 3r2h)

l4
− 2γr2−4γ

h (q̂/
√
C)2γ

]
, (6.17)

and the period is

τ =
8π∆l4r4γ−1

h (Cr2h/l
2)∆

−2γl4r2h(q̂/
√
C)2γ + 2Cl2r4γh + 6Cr4γ+2

h

. (6.18)

The derivation of the free energies and the explicit construction of the ϕ-mapping vector
fields (ϕrh , ϕΘ) for all six non-extensive entropy models are provided in Appendix A, ensuring
full reproducibility.

7 Results, Discussion, and Applications
The graphical outputs generated from the MATLAB simulations of Eqs. (12), (19), (22),
(27), and (30) reveal the thermodynamic topology of AdS Einstein-Power-Yang-Mills (EPYM)
black holes under various generalized non-extensive entropy formalisms. Each entropy model
modifies the entropy–radius relation and, consequently, the Euclidean period τ(rh), whose
zero points (ZPs) determine the corresponding topological charges w = ±1. The τ(rh) pro-
files, together with the constructed vector-field diagrams, characterize the stability, phase
structure, and topological transitions of the system. To ensure transparency, we compared
our primary topological diagrams with those reported in [2]. In the common parameter lim-
its (q → 1 and small deformation parameters), both analyses produce consistent winding-
number classifications. However, for EPYM power q ̸= 1, we observe systematic shifts in
critical deformation thresholds and additional intermediate topological states; these differ-
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Figure 6: Three–dimensional surface of the thermodynamic response function χµµ =
∂2F/∂µ2 in the restricted phase space. The curvature of this surface reveals the stabil-
ity characteristics of the EPYM–AdS black hole: positive regions correspond to thermody-
namically stable configurations, while negative depressions indicate unstable or metastable
states. The emergence of additional sign-changing ridges compared with Gashti et al. (2025)
signifies new response–driven topological transitions produced by generalized entropy defor-
mation.

ences are supported by our response-function diagnostics and are visible in the updated
figures.

Interpretation of Figures 1–9
Figures 1–9 collectively display the full thermodynamic–topology landscape for AdS EPYM
black holes under the six generalized entropy models considered. The deformation param-
eters in each model regulate the presence, number, and type of ZPs, thereby controlling
stability regions and topological sectors.

Figure 1 shows the Barrow-entropy topology in the restricted phase space (RPS). The
vector field ϕrh reveals two isolated ZPs with opposite charges (w = ±1). Increasing the
Barrow deformation parameter δ shifts these points and eventually merges them, indicating
a reorganization of microstructure and the onset of a stability transition.

Figure 2 illustrates the topology governed by the Rényi entropy parameter λ. Three
ZPs—with winding numbers (+1, 0,−1)—emerge for small λ, indicating multiple metastable
states. As λ increases, these ZPs collapse into a single w = +1 charge, signaling a topological
phase transition toward a globally stable state.

Figure 3 presents the updated Sharma–Mittal topology using an extended range r ≤
400, following reviewer recommendations. For parameter sets with τ = 6 and τ = 1, the
function τ(r) increases monotonically without crossing the axis, confirming the absence of
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Figure 7: Distribution of topological charge Qtop across the parameter plane. Each colored
band identifies a distinct topological sector determined by the winding number. Smooth
boundaries between these domains represent continuous deformations of thermodynamic
topology with varying deformation parameters. The appearance of additional intermediate
regions, absent in [2], evidences the formation of metastable microstate domains due to
higher–order entropy modifications.

ZPs. For τ = 17, however, a single ZP appears at small r, generating the loop shown in
panel (f). Extending the range confirms that no additional ZPs arise, validating our phys-
ical domain restrictions and addressing concerns regarding earlier negative-region artifacts.
Overall, the Sharma–Mittal model transitions between stability regimes depending on the
ratio α/β, providing a tunable non-extensive interpolation mechanism.

Figure 4 depicts the Kaniadakis entropy topology. For moderate deformation param-
eter K, the system supports two ZPs (w = ±1). As K → 0, the negative-charge ZP dis-
appears and the topology becomes purely w = +1, indicating the recovery of the extensive
Boltzmann–Gibbs limit.

Figure 5 shows the Tsallis–Cirto entropy topology. At small ∆, dual ZPs (w = ±1)
appear; increasing ∆ suppresses the negative branch until only a single stable w = +1 ZP
remains. This reflects the stabilization effect of strong non-additivity.

Figure 6 introduces the response-function surface χµµ = ∂2F/∂µ2, with positive cur-
vature indicating stability. Compared to [2], we observe additional sign-reversing ridges
associated with entropy-induced topological transitions.

Figure 7 displays the topological-charge heatmap Qtop(q, α), where colored domains
represent distinct topological sectors. Intermediate regions—absent in earlier works—trace
metastable microstructure influenced by higher-order entropy corrections.

Figure 8 maps Qtop(S, γ) for the EPYM–AdS configuration, revealing multiple winding-
number inversion curves and new stability branches.

Finally, Figure 9 demonstrates a smooth bulk–boundary mapping between the bulk de-
formation λbulk and the boundary central charge cboundary, showing a consistent holographic
correspondence and highlighting the novelty of the present work.
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Figure 8: Topological charge map Qtop(S, γ) for the EPYM–AdS black–hole system. Distinct
color zones denote topologically inequivalent thermodynamic phases separated by critical
lines of winding–number inversion. Shaded transition areas identify new stability branches
generated under non–extensive entropy corrections (Barrow, Rényi, Sharma–Mittal, and
others), revealing a richer phase structure than that reported by [2]

Figure 9: Explicit holographic correspondence between bulk deformation parameter λbulk
and boundary central charge cboundary. The smooth gradient surface confirms the consistency
between bulk geometry modifications and the dual CFT response. This mapping establishes
the bulk–boundary thermodynamic duality and demonstrates that the proposed analysis
transcends the conventional restricted–phase–space treatment of [2].
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7.1 Barrow entropy analysis
Figures 1 show the Barrow-entropy dependence of τ(rh). At small deformation δ, the curve
intersects the axis twice, producing ZPs with opposite charges (w = ±1). Larger δ introduces
more structure and additional ZPs, illustrating a richer topological manifold. The ZP loops
in the vector-field diagram represent topological defects separating the small and large black
hole phases.

7.2 Rényi entropy analysis
Figures 2 depict the Rényi entropy behavior. For small λ, three ZPs arise, indicating multiple
coexisting thermal states. As λ increases, the ZPs merge into a single w = +1 state,
expressing a topological phase transition and reflecting the compactification of phase space
characteristic of Rényi non-extensivity.

7.3 Sharma–Mittal entropy analysis
Figures 3 demonstrate three regimes based on the parameters (α, β):

• α > β: alternating topology (w = +1,−1,+1),

• α ≃ β: single stable w = +1 charge,

• β > α: reversed pattern (w = −1,+1,−1).

The Sharma–Mittal entropy therefore interpolates between Tsallis and Rényi cases, providing
a controllable non-extensive deformation of the thermodynamic topology.

7.4 Kaniadakis entropy analysis
Figures 4 show that for K ≪ 1, the τ(rh) curve yields two ZPs (w = ±1). Increasing K
causes annihilation of the negative-charge point, resulting in a single w = +1 state. Thus,
Kaniadakis entropy smoothens the thermodynamic manifold and suppresses multi-phase
coexistence.

7.5 Tsallis–Cirto entropy analysis
Figures 5 show that the Tsallis–Cirto entropy supports two ZPs at small ∆. Beyond ∆ ≃ 0.9,
only one remains, indicating a transition from bi-stability to mono-stability. The disappear-
ance of the negative branch signifies strong suppression of nonlinear fluctuations.

7.6 Comparative topological structure
Across all entropy models, ZPs of τ(rh) correspond to phase boundaries where the heat
capacity changes sign. Multiple ZPs represent multi-phase coexistence; single ZPs represent
a unique stable phase. The winding numbers w = ±1 extracted via Duan’s ϕ-mapping
classify the topological sectors of the black hole thermodynamic manifold.
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7.7 Applications and physical implications
1. Holographic correspondence: Bulk topological charge maps to CFT topological

invariants.

2. Phase classification: τ(rh) = 0 identifies first- and second-order transitions.

3. Non-extensive corrections: Barrow, Rényi, Sharma–Mittal, Kaniadakis, and Tsallis–
Cirto models reshape microstate organization.

4. Information geometry: Changes in w correlate with Ruppeiner curvature transi-
tions.

5. Astrophysical implications: Non-extensive signatures may extend to dark-energy-
corrected astrophysical black holes and holographic superconductors.

7.8 Summary of Topological Behavior

Table 1: Topological characteristics of AdS EPYM black holes under Barrow, Rényi, and
Sharma–Mittal entropies.

Entropy Type Parameter ZP Behavior Topological Charge
Barrow δ 2–3 ZPs w = ±1
Rényi λ 3 → 1 w = +1,−1
Sharma–Mittal α, β 1–3 ZPs alternating w = ±1

Table 2: Topological characteristics under Kaniadakis and Tsallis–Cirto entropies.
Entropy Type Parameter ZP Behavior Topological Charge
Kaniadakis K 2 → 1 ZPs w = +1
Tsallis–Cirto ∆ 2 → 1 ZPs w = +1

Our computed topological charges align qualitatively with Wei and Liu [42], Wei et
al. [41], and Liu and Wang [35]. Weak deformation parameters reproduce the standard
w = +1 topology; strong deformations reveal new intermediate phases absent in Boltzmann–
Gibbs thermodynamics.

Each ZP carries a local winding number ni = ±1, with +1 denoting stability and −1
denoting instability. The total topological charge W =

∑
i ni thus encodes global thermo-

dynamic stability.
In summary, non-extensive entropy deformations substantially modify the thermody-

namic topology of AdS EPYM black holes, promoting transitions from multi-phase coexis-
tence to a stable single-phase regime. These findings deepen our understanding of hologra-
phy, criticality, and black hole microstructure.

8 Conclusion
In this manuscript, we carried out a unified investigation of the holographic and thermo-
dynamic topology of Anti–de Sitter (AdS) Einstein–Power–Yang–Mills (EPYM) black holes
within both the bulk–boundary and the restricted phase space (RPS) frameworks. By em-
ploying generalized entropy models—including Barrow, Rényi, Sharma–Mittal, Kaniadakis,
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and Tsallis–Cirto entropies—we demonstrated that entropy deformation plays a decisive role
in modifying the topological charge and the resulting equilibrium structure of the black hole
system.

Our results show that Barrow and Kaniadakis entropies induce nontrivial topological
transitions, indicated by the flipping of the topological charge w between +1 and −1. Con-
versely, Rényi, Sharma–Mittal, and Tsallis–Cirto entropies maintain a stable phase structure
with w = +1, signalling the absence of critical behavior within the corresponding parameter
domains. These findings are consistent with the free energy and ϕ-mapping analyses pre-
sented in Sections 4–7, confirming the robustness of the RPS formulation when extended to
non-extensive entropy deformations.

Overall, the study establishes a coherent geometric and holographic interpretation of
EPYM black hole thermodynamics across a broad class of entropy models. The results
provide new insights into black hole microstructure and contribute to an improved un-
derstanding of how generalized entropies modify equilibrium topology in the AdS/CFT
correspondence.

Potential extensions include the study of higher-dimensional, charged, or rotating EPYM
black holes under generalized entropies, as well as exploring the influence of quantum cor-
rections, dark-energy modifications, or data-driven holographic reconstruction methods on
topological stability.
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Appendix A. Detailed Thermodynamic Derivations
This appendix provides the complete derivations used in Sections 4–7. We begin with
the Euclidean action and restricted phase-space (RPS) identifications, derive the off-shell
thermodynamic variables (M,T, SNE, F ) for the EPYM–AdS black hole, and then provide
the corresponding expressions for all six non-extensive entropy models.

A.1 Preliminaries and RPS Identifications
The Euclidean EPYM–AdS action takes the form

IE =
1

16π

∫
d4x

√
g
(
R− 2Λ− (F a

µνF
aµν)γ

)
+ IGH, (A.1)

where γ is the non-linear Yang–Mills parameter. With the standard RPS dictionary:

P = − Λ

8π
, C =

1

4G
, q̂ ≡ q (2C)1/2,

the metric function
f(r) = 1− 2GM

r
+

r2

l2
+

G(2q2)γ

2(4γ − 3)r4γ−2

yields the on-shell mass at the horizon rh:

M(rh) =
rh
2G

(
1 + 8πGPr2h − (2q2)γG

2(4γ − 3)r4γ−2
h

)
. (A.2)

The Hawking temperature is

T =
1

4πrh

(
1 + 8πGPr2h − (2q2)γG

2r4γ−2
h

)
, (A.3)

and the thermodynamic volume is V =
4πr3h
3 .

A.2 Off-Shell Free Energy and ϕ-Mapping
The Helmholtz free energy at fixed (T,Q, P ) is

F (rh) = M(rh)− T SNE(rh), (A.4)

where SNE is replaced by the appropriate non-extensive entropy model.
Following the ϕ-mapping construction used in Section 6, the topological vector field is

ϕrh =
∂F

∂rh
, ϕΘ = T − Toff(rh), (A.5)

with period
τ =

2π

|∂T/∂rh|
. (A.6)

Substituting Eqs. (A.2)–(A.3) and the appropriate SNE(rh) produces the working formulas
used in Section 6.
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A.3 Non-Extensive Entropy Models
Below we provide the entropy and its derivative dSNE/drh used.

1. Tsallis Entropy

ST = α r
2(1−q)
h , (A.7)

dST

drh
= 2α(1− q)r1−2q

h . (A.8)

2. Rényi Entropy

SR =
1

λ
ln (1 + λSBH) , (A.9)

dSR

drh
=

1

1 + λSBH

dSBH

drh
. (A.10)

3. Sharma–Mittal Entropy

SSM =
(1 + αSBH)

β−α
α − 1

β − α
, (A.11)

dSSM

drh
=

β − α

α(β − α)
(1 + αSBH)

β−2α
α α

dSBH

drh
. (A.12)

4. Barrow Entropy

SB = S
1+δ/2
BH , (A.13)

dSB

drh
=

(
1 +

δ

2

)
S
δ/2
BH

dSBH

drh
. (A.14)

5. Kaniadakis Entropy

SK =
1

κ
sinh

(
κSBH

)
, (A.15)

dSK

drh
= cosh(κSBH)

dSBH

drh
. (A.16)

6. Tsallis–Cirto Entropy

STC = S∆
BH , (A.17)

dSTC

drh
= ∆S∆−1

BH

dSBH

drh
. (A.18)

These derivatives are substituted into Eq. (A.4) to compute the free-energy landscape and
the ϕ-mapping vector fields shown in Section 6.
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A.4 Example: Tsallis–Cirto ϕrh

The explicit expression for ϕrh used in Section 7 is

ϕrh =
1

4

[
−8π∆(Cr2h/l

2)∆rh
l2τ

+
2C(l2 + 3r2h)

l4
− 2γr2−4γ

h (q̂/
√
C)2γ

]
, (A.19)

and the corresponding period is

τ =
8π∆l4r4γ−1

h (Cr2h/l
2)∆

−2γl4r2h(q̂/
√
C)2γ + 2Cl2r4γh + 6Cr4γ+2

h

. (A.20)

These expressions, together with the general formulas above, reproduce all topological and
thermodynamic results presented in Sections 6 and 7.
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