Holographic Dark Energy Models in FRW Universe from Parametrization of q with f(Q,T) Gravity

Document Type : Regular article

Authors

1 Department of Mathematics, PGTD, RTMN University, Nagpur, Maharashtra 440033, India

2 Laxminarayan Innovation Technological University, Nagpur, Maharashtra 440033, India

Abstract

In this paper, we study the {Holographic Dark Energy (HDE)} cosmological models within the f(Q,T) gravity framework. Here, Q and T represent the non-metricity scalar and energy-momentum tensor trace, respectively. In order to find the solutions in the Friedman-Robertson-Walker model, we use the deceleration parameter q(z) and describe the transiting universe evolution and the Hubble parameter. We obtain the constraints on model parameters using {Markov Chain Monte Carlo (MCMC)}  analysis with the supernovae type Ia observations from the Pantheon sample. We further investigate the cosmological parameters like the energy density, equation of state parameter, and classical stability parameter in terms of redshift with the physically plausible f(Q,T)=μ Q +υ T form. We investigate three HDE models in this framework with different IR cutoffs. The distinct cosmological evolution scenarios have been studied with the cosmographic parameters.

Keywords

Main Subjects

 

Article PDF

[1] S. Perlmutter, G. Aldering, M. D. Valle, S. Deustua, R. S. Ellis, et al., ”Discovery of a supernova explosion at half the age of the Universe”, Nature 391, 51 (1998). DOI:10.1038/34124
[2] A. G. Riess, A.V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, et al., ”Observational evidence from supernovae for an accelerating universe and a cosmological constant”, Astron. J. 116, 3, 1009, (1998). DOI:10.1086/300499
[3] D. N. Spergel, L. Verde, H. V. Peiris, E. Komatsu, M. R. Nolta, et al., ”First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters”, Astrophys. J. Suppl. 148, 175 (2003). DOI:10.1086/377226
[4] M. Tegmark, M. A. Strauss, M. R. Blanton, K. Abazajian, S. Dodelson, et al., ”Cosmological parameters from SDSS and WMAP”, Phys. Rev. D 69, 103501 (2004). DOI:10.1103/PhysRevD.69.103501
[5] S. Weinberg, ”The cosmological constant problem”, Rev. Mod. Phys. 61, 1 (1989). DOI:10.1103/RevModPhys.61.1
[6] L. P. Chimento, A. S. Jakubi, D. Pavon, W. Zimdahl, ”Interacting quintessence solution to the coincidence problem”, Phys. Rev. D 67, 083513 (2003). DOI:10.1103/PhysRevD.67.083513
[7] D. Pavon, W. Zimdahl, ”Holographic dark energy and cosmic coincidence”, Phys. Lett. B 628, 206–210 (2005). DOI:10.1016/j.physletb.2005.08.134
[8] S. Capozziello, R. D’Agostino, O. Luongo, “Extended gravity cosmography” Int. J. Mod. Phys. D 28, 1930016 (2019) https://doi.org/10.1142/S0218271819300167
[9] G. ’t Hooft, ”Dimensional reduction in quantum gravity”, arXiv preprint gr-qc/9310026 (1993).
[10] M. Li, ”A model of holographic dark energy”, Phys. Lett. B 603, 1 (2004). DOI:10.1016/j.physletb.2004.10.014
[11] S. Nojiri, S. D. Odintsov, ”Unifying phantom inflation with late-time acceleration: Scalar phantom–non-phantom transition model and generalized holographic dark energy”, Gen. Relativ. Gravit. 38, 1285 (2006). DOI:10.1007/s10714-006-0301-6
[12] M. Li, X.-D. Li, S. Wang, X. Zhang, ”Probing interaction and spatial curvature in the holographic dark energy model”, J. Cosmol. Astropart. Phys. 12, 014 (2009). DOI:10.1088/1475-7516/2009/12/014
[13] Y. S. Myung, ”Entropic force and its cosmological implications”, Astrophys. Space Sci. 335, 2, 553 (2011). DOI:10.1007/s10509-011-0753-3
[14] S. Nojiri, S. D. Odintsov, V. K. Oikonomou, T. Paul ”Unifying holographic inflation with holographic dark energy: A covariant approach”, Phys. Rev. D 102, 023540 (2020). DOI:10.1103/PhysRevD.102.023540
[15] L. N. Granda, A. Oliveros, ”Infrared cut-off proposal for the holographic density”, Phys. Lett. B, 669, 275 (2008). DOI:10.1016/j.physletb.2008.10.017
[16] L. N. Granda, A. Oliveros, ”New infrared cut-off for the holographic scalar fields models of dark energy”, Phys. Lett. B 671, 199 (2009). DOI:10.1016/j.physletb.2008.12.025
[17] M. Li, X.-D. Li, Y.-Z. Ma, X. Zhang, Z. Zhang, ”Planck constraints on holographic dark energy”, J. Cosmol. Astropart. Phys., 1309, 021 (2013). DOI:10.1088/1475- 7516/2013/09/021
[18] A. Pasqua, R. da Rocha, S. Chattopadhyay, ”Holographic dark energy models and higher order generalizations in dynamical Chern–Simons modified gravity”, Eur. Phys. J. C, 75, 44 (2015). DOI:10.1140/epjc/s10052-014-3256-x
[19] R. Chaubey, A. K. Shukla, ”Holographic dark energy model with quintessence in general class of Bianchi cosmological models”, Can. J. Phys., 93, 68–79 (2015). DOI:10.1139/cjp-2014-0225
[20] S. Mandal, A. Singh, R. Chaubey, ”Cosmic evolution of holographic dark energy in f(Q, T ) gravity”, Int. J. Geom. Methods Mod. Phys., 20, 2350084 (2023). DOI:10.1142/S0219887823500846
[21] G. Varshney, U. K. Sharma, A. Pradhan, N. Kumar, ”Reconstruction of Tachyon, DiracBorn-Infeld-essence and Phantom model for Tsallis holographic dark energy in f (R, T) gravity”, Chin. J. Phys., 73, 56 (2021). DOI:10.1016/j.cjph.2021.04.014
[22] J. D. Barrow, ”The area of a rough black hole”, Phys. Lett. B 808, 135643 (2020). DOI:10.1016/j.physletb.2020.135643
[23] C. Tsallis, ”Possible generalization of Boltzmann-Gibbs statistics”, J. Stat. Phys. 52, 479 (1988). DOI:10.1007/BF01016429
[24] M. Younas, A. Jawad, S. Qummer, H. Moradpour., ”Cosmological Implications of the Generalized Entropy Based Holographic Dark Energy Models in Dynamical Chern‐Simons Modified Gravity”, Adv. High Energy Phys. 1, 1287932 (2019). DOI:10.1155/2019/1287932
[25] S. Abe, ” General pseudoadditivity of composable entropy prescribed by the existence of equilibrium”, Phys. Rev. E 63, 061105 (2001). DOI:10.1103/PhysRevE.63.061105
[26] A. Majhi, ”Non-extensive statistical mechanics and black hole entropy from quantum geometry”, Phys. Lett. B 775, 32 (2017). DOI:10.1016/j.physletb.2017.10.043
[27] Y. Xu, G. Li, T. Harko, S.-D. Liang, ”Regular article-theoretical physics”, Eur. Phys. J. C 79, 708 (2019). DOI:10.1140/epjc/s10052-019-7207-4
[28] R. Zia, D.C. Maurya, A.K. Shukla, ”Transit cosmological models in modified f(Q,T) gravity”, Int. J. Geom. Methods Mod. Phys. 18, 2150051 (2021) DOI:10.1142/S0219887821500511
[29] M. Shiravand, S. Fakhry, M. Farhoudi, ”Cosmological inflation in f (Q, T) gravity. Physics of the Dark Universe”, Phys. Dark Univ. 37, 101106 (2022). DOI:10.1016/j.dark.2022.101106
[30] G. P. Singh, A. R. Lalke, ”Cosmological study with hyperbolic solution in modified f (Q, T) gravity theory”, Indian J. Phys. 96, 4361–4372 (2022). DOI:10.1007/s12648- 022-02341-z
[31] A. R. Lalke, G. P. Singh, A. Singh, ”Late-time acceleration from ekpyrotic bounce in f (Q, T) gravity”, Int. J. Geom. Methods Mod. Phys., 20, 2350131 (2023). DOI:10.1142/S0219887823501311
[32] D. Foreman-Mackey, D. W. Hogg, D. Lang, J. Goodman, ”emcee: The MCMC hammer”, Publ. Astron. Soc. Pac.125, 925, 306 (2013). DOI:10.1086/670067
[33] J. Beltrán Jiménez, L. Heisenberg, T. S. Koivisto, ”Coincident general relativity”, Phys. Rev. D 98, 044048 (2018). DOI:10.1103/PhysRevD.98.044048
[34] T. Harko, T. S. Koivisto, F. S. Lobo, G. J. Olmo, D. Rubiera-Garcia,”Coupling matter in modified Q gravity”, Phys. Rev. D 98, 084043 (2018). DOI:10.1103/PhysRevD.98.084043
[35] A. A. Mamon, S. Das, ”A parametric reconstruction of the deceleration parameter”, Eur. Phys. J. C 77, 495 (2017). DOI:10.1140/epjc/s10052-017-5066-4
[36] A. R. Lalke, G. P. Singh, A. Singh, ”Cosmic dynamics with late-time constraints on the parametric deceleration parameter model”, Eur. Phys. J. Plus 139, 288 (2024). DOI:10.1140/epjp/s13360-024-05091-5
[37] A. Singh, ”Homogeneous and anisotropic cosmologies with affne EoS: a dynamical system perspective”, Eur. Phys. J. C 83,8, 696 (2023). DOI:10.1140/epjc/s10052-023- 11879-z
[38] S. Vagnozzi, A. Loeb, M. Moresco, “Eppur e piatto? The Cosmic Chronometers Take on Spatial Curvature and Cosmic Concordance”, ApJ 908, 84 (2021) https://doi.org/10.3847/1538-4357/abd4df
[39] D. M. Scolnic, D. O. Jones, A. Rest, Y. C. Pan, R. Chornock, et al., ”The complete light-curve sample of spectroscopically confirmed SNe Ia from Pan-STARRS1 and cosmological constraints from the combined Pantheon sample”, Astrophys. J. 859, 101 (2018). DOI:10.3847/1538-4357/aab9bb
[40] K. Asvesta, L. Kazantzidis, L. Perivolaropoulos, C. G. Tsagas, ”Observational constraints on the deceleration parameter in a tilted universe”, Mon. Not. R. Astron. Soc. 513, 2394–2406 (2022). DOI:10.1093/mnras/stac922
[41] A. Singh, S. Krishnannair, ”Affne EoS cosmologies: Observational and dynamical system constraints”, Astron. Comput. 47, 100827 (2024). DOI:10.1016/j.ascom.2024.100827
[42] S. Mandal, A. Singh, R. Chaubey, ”Late-time constraints on barotropic fluid cosmology”, Phys. Lett. A 519, 129714 (2024). DOI:10.1016/j.physleta.2024.129714
[43] A. Singh, S. Mandal, R. Chaubey, R. Raushan, ”Observational constraints on the expansion scalar and shear relation in the Locally rotationally symmetric Bianchi I model”, Phys. Dark Univ. 47, 101798 (2025). DOI:10.1016/j.dark.2024.101798
[44] A. Lewis, ”GetDist: a Python package for analysing Monte Carlo samples”, JCAP, 08, 025, (2025). DOI: 10.1088/1475-7516/2025/08/025
[45] K. Karami, J. Fehri. ”Holographic dark energy in a non-flat universe with GrandaOliveros cut-off.” International Journal of Theoretical Physics 49,5, 1118,(2010). DOI:10.1007/s10773-010-0291-8
[46] S. D. Hsu, ”Entropy bounds and dark energy”, Phys. Lett. B 594, 1 (2004). DOI:10.1016/j.physletb.2004.05.020
[47] I. Durán, D. Pavón, ”Model of interacting holographic dark energy at the Ricci scale”, Physical Review D—Particles, Fields, Gravitation, and Cosmology 83, 023504 (2011). DOI:10.1103/PhysRevD.83.023504
[48] L. P. Chimento, M. G. Richarte, ”Interacting dark matter and modified holographic Ricci dark energy induce a relaxed Chaplygin gas”, Phys. Rev. D 84, 123507 (2011). DOI:10.1103/PhysRevD.84.123507
[49] H. Moradpour, S. A. Moosavi, I. P. Lobo, J. M. Graça, A. Jawad, I. G. Salako, ”Thermodynamic approach to holographic dark energy and the Rényi entropy”, Eur. Phys. J. C, 78, 829 (2018). DOI:10.1140/epjc/s10052-018-6310-6
[50] A. S. Jahromi, S. A. Moosavi, H. Moradpour, J. M. Graça, I. P. Lobo, I. G. Salako, A. Jawad, ”Generalized entropy formalism and a new holographic dark energy model”, Phys. Lett. B, 780, 21 (2018). DOI:10.1016/j.physletb.2018.02.052
[51] A. Rényi, ”Probability Theory”, North-Holland, Amsterdam (1970).
[52] N. Komatsu, ”Cosmological model from the holographic equipartition law with a modified Rényi entropy”, Eur. Phys. J. C 77, 229 (2017). DOI:10.1140/epjc/s10052-017- 4790-6
[53] H. Moradpour, A. Bonilla, E. M. C. Abreu, J. A. Neto, ”Accelerated cosmos in a nonextensive setup”, Phys. Rev. D 96, 123504 (2017). DOI:10.1103/PhysRevD.96.123504
[54] S. Capozziello, R. D’Agostino, O. Luongo, ”Extended gravity cosmography”, Int. J. Mod. Phys. D 28, 1930016 (2019). DOI:10.1142/S0218271819300167
[55] A. Singh, ”Dynamical systems of modified Gauss–Bonnet gravity: cosmological implications”, Eur. Phys. J. C 85, 24 (2025). DOI:10.1140/epjc/s10052-024-13732-3
[56] A. Singh, ”Role of dynamical vacuum energy in the closed universe: implications for bouncing scenario”, Gen. Relativ. Gravit. 56, 138 (2024). DOI:10.1007/s10714-024- 03325-6
Volume 5, Issue 4
October 2025
Pages 95-115
  • Receive Date: 09 September 2025
  • Revise Date: 05 October 2025
  • Accept Date: 02 October 2025