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Abstract. In this paper, we study the Holographic Dark Energy (HDE) cosmological
models within the f(Q,T ) gravity framework. Here, Q and T represent the non-
metricity scalar and energy-momentum tensor trace, respectively. In order to find the
solutions in the Friedman-Robertson-Walker model, we use the deceleration parameter
q(z) and describe the transiting universe evolution and the Hubble parameter. We ob-
tain the constraints on model parameters using Markov Chain Monte Carlo (MCMC)
analysis with the supernovae type Ia observations from the Pantheon sample. We fur-
ther investigate the cosmological parameters like the energy density, equation of state
parameter, and classical stability parameter in terms of redshift with the physically
plausible f(Q,T ) = µQ + νT form. We investigate three HDE models in this frame-
work with different IR cutoffs. The distinct cosmological evolution scenarios have been
studied with the cosmographic parameters.
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1 Introduction

The observational data from distant Ia supernovae, large scale structure, and cosmic mi-
crowave background [1–4] point to an accelerated expansion of the present universe. It
suggests that there exist a new component in the universe named as ‘dark energy’ with
negative pressure. The dark energy constitutes nearly 69% of the total energy density of the
universe today. The simplest candidate to explain the dark energy in the General Relativity
model is the cosmological constant (Λ) having equation of state ω = −1. Although the
cosmological constant offers a straightforward explanation for dark energy, it encounters
two major difficulties: “the cosmological constant problem” [5] and “the cosmic coincidence
problem” [6,7]. As alternatives to this constant dark energy model, the dynamical mod-
els of dark energy such as the ’quintessence’ (with − 1

3 > ω > −1) and the more exotic
’Phantom’ scenario (with ω < −1) have been proposed [8]. Furthermore, to overcome the
challenges linked with the cosmological constant and Quintessence, particularly those arising
from negative pressure, the Chaplygin gas may be useful for describing dark energy.

The holographic principle, initially proposed by ’t Hooft [9] in the context of black hole
physics, has led to one of the prominent dark energy models known as holographic dark
energy (HDE) [10–14]. The holographic principle emphasizes that black hole entropy is
determined by the surface area of the horizon, rather than by the enclosed volume. Granda
and Oliveros [15,16] proposed a new infrared cutoff for the HDE density, showing that
it can account for the accelerated expansion of the universe and remains consistent with
current observational data. The HDE model has been extensively studied to describe late
time accelerating stage of the universe [17–21]. By employing an extended horizon entropy
relation, Barrow [22] recently formulated a new HDE model. Alternatively, Tsallis entropy
[23–25] provides a generalized framework of the conventional Bekenstein entropy.

The HDE models in the modified gravity frameowrk may describe the universe evolution
dominated by dark energy during the late-times [18,20]. The varying dark energy in these
models may be compatible with the observations. In the present work, we investigate HDE
models within the framework of f(Q,T ) gravity using classical stability criteria, considering
different infrared (IR) cutoffs such as the Granda–Oliveros (GO) cutoff and the Modified
Ricci Radius cutoff [26–31]. We aim to obtain the varying dark energy scenario in the HDE
models and test its compatibility with the observational data in the present study. In order
to do the study on varying dark energy scenario, we investigate the Friedmann– Robertson–
Walker (FRW) model within the framework of f(Q,T ) gravity by considering a specific
form of the deceleration parameter q(z). The deceleration parameter plays a crucial role in
characterizing the universe’s evolution, and the validity of its chosen form can be assessed
through observational data. In particular, constraints on the model parameters are derived
using Type Ia supernova observations. Furthermore, we determine the best-fit values of the
parameters by applying the MCMC algorithm to the data sample [32].

The manuscript is divided into 5 different sections: In the Section 2, we summarize the
field equations of the f(Q,T ) gravity. The Section 3 deals with the basic information on
the parametrized form of deceleration parameter q in terms of the redshift z and analyze
the Hubble parameter using observational data. We study three distinct models of HDE in
f(Q,T ) gravity framework in the Section 4. We also examine the cosmological parameters,
namely the energy density ρ, the equation of state (EoS) parameter, and the classical sta-
bility parameter, to assess the compatibility of these models with the standard cosmological
model. The Section 5 presents the summary of results.
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2 The field equations in f(Q, T ) gravity
The f(Q,T ) gravity [27] may be visualized as an extended version of the symmetric telepar-
allel gravity [33,34]. This theory is composed of the gravitational action defined in terms
of the energy-momentum tensor trace (T ) and the non-metricity scalar (Q). This theory
belongs to the non-conservative class of modified theories. Introducing a coupling between
Q and T in HDE scenarios may lead to interesting results.
The modified Einstein-Hilbert action in the f(Q,T ) gravity theory equipped with the matter
Lagrangian Lm may take the form [27]

S =

∫ (
1

16π
f(Q,T ) + Lm

)√
−gd4x, (2.1)

where g represents the determinant of metric tensor gij and f(Q,T ) denotes a general
function of T and Q. In this theory, the non-metricity tensor and non-metricity scalar may
respectively be given by

Qµij ≡ ∇µgij , Q ≡ −gij
(
Lµ
νiL

ν
jµ − Lµ

νµL
ν
ij

)
. (2.2)

In this theory, the universe evolution will be governed by the field equation derived from
the action (2.1) as [27]

Lµ
νγ = −1

2
gµλ (∇γgνλ +∇νgλγ −∇λgνγ) . (2.3)

− 2√
−g

∇µ

(
fQ

√
−gPµ

ij

)
− 1

2
gijf + fT (Tij +Θij)− fQ

(
PiµnQ

µn
j − 2Qµn

i Pµnj

)
= 8πTij ,

(2.4)
where fQ ≡ ∂f

∂Q , fT ≡ ∂f
∂T , the energy-momentum tensor is Tij = − 2√

−g

δ(
√
−gLm)
δgij and

Θij = gµν
δTµν

δgij . In f(Q,T ) theory, the super-potential is given by [27]

Pµ
ij =

1

4

(
−Qµ

ij + 2Qµ
ij +Qµgij − Q̃µgij − δµ(iQj)

)
. (2.5)

In the above equation, the trace of the non-metricity tensor may be expressed as

Qµ = Qi
µi, Q̃µ = Qi

µi. (2.6)

By varying the gravitational action (2.1) with respect to the connection, the field equations
can be written as [27]

∇i∇µ

(√
−gfQPiµ

j + 4πHiµ
j

)
= 0, (2.7)

where the hyper-momentum tensor density given by Hij
λ =

√
−g

16π fT
δT
δΓ̃λ

ij

+ δ
√
−gLm

δΓ̃λ
ij

.
In order to obtain solutions of the field equations within the f(Q,T ) gravity, appropriate

simplifications should be made. In this study, we take the homogeneous and isotropic FRW
metric having a flat-spatial section as

ds2 = −dt2 + a2(t)δijdx
idxj , (2.8)

where the scale factor is denoted by a(t). By using this quantity, one may derive the
expansion rate of the universe as H(t) ≡ ȧ

a . The time derivative is denoted by the overhead
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dot. We may also have the relation between non-metricity scalar and Hubble parameter as
Q = 6H2. Within the FRW background, the field equations are given by [27]

(f/2)− 6FH2 − 2G̃

1 + G̃

(
FḢ + ḞH

)
= 8πρ, (2.9)

−(f/2) + 6FH2 + 2
(
FḢ + ḞH

)
= 8πp, (2.10)

where F = fQ and G̃ = fT
8π . By adding (2.9) and (2.10), one can obtain

Ḣ +
Ḟ

F
H =

4π

F

(
1 + G̃

)
(ρ+ p) . (2.11)

We consider the EoS, p = (γ − 1)ρ, where ρ represents the energy density, and whereas p
designate cosmic fluid pressure. By solving equations (2.9) and (2.11), we get an equation
of matter density as

ρ =
f − 12FH2

16π(1 + γG̃)
. (2.12)

By defining the EoS parameter ω ≡ γ − 1, the phantom kind of dark energy evolution may
be visualized by ω < −1, whereas, for −1 < ω < − 1

3 , one may have the quintessence kind
of dark energy.

3 The evolution of deceleration parameter (q) and the
observational constraints

In the present work, we proceed with the functional form f(Q,T ) = µQ + νT [27], where
µ and ν are the constants. Here we take µ = F = fQ, ν = fT , which we use as the
free-constant parameters in the model as per the requirements. The negative and positive
of these parameters will indicate decreasing and increasing behavior of f with Q and T
respectively. We also get

Q = 6H2, T = ρ− 3p. (3.1)

The equation (3.1) and p = (γ − 1)ρ would yield

f = 6µH2 + (4− 3γ)νρ. (3.2)

By using equation (3.2) in (2.12), we get

ρ =
−6µH2

[2(8π + γν) + ν(4− 3γ)]
, (3.3)

p =
−6µH2(γ − 1)

[2(8π + γν) + ν(4− 3γ)]
. (3.4)

The deceleration parameter plays a vital role to describe the expanding behavior of the
universe. Initially, the expansion of the universe was slowing down due to the strong grav-
itational attraction between matter and radiation. However, after the expansion of the
universe matter become more dispersed and the gravitational force weakened, altering the
cosmic dynamics. The universe has now entered an accelerating phase, characterized by a
negative q. Analyzing this transition is significant for understanding the basic mechanism
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driving the universe’s expansion in a cosmological model. The deceleration parameter, de-
fined as q = − ä

aH2 , can be used to describe the rate of expansion of the universe and can
equivalently be expressed as q = −1 + d

dt
1
H . The cosmological models can be constructed

based on the deceleration parameter, as it directly depends on the derivatives of the scale
factor and the Hubble parameter.
The parameterization of deceleration parameter q may have a significant impact on universe’s
expanding rate in a model. A parametric approach provides a practical framework for ana-
lyzing the transition from deceleration to acceleration in the universe, while improving the
effectiveness of upcoming cosmological observations. Inspired by these facts, in the present
work, we have chosen a special form of q(z) which may provide a signature flip describing
the deceleration to accelerated expansion phase. We proceed with the form [35,36]

q(z) = q0 + q1

(
ln(z + 2)

z + 1
− ln 2

)
, (3.5)

where a is the scale factor, and q0 and q1 are dimensionless quantities that can be constrained
through observational data. The relation between redshift z and the scale factor is given
by a0

a = z + 1, where in agreement with observational value a0 = 1 is for the present-day
universe, 0 < a < 1 for the past, and a > 1in the late-time universe [37]. Related to redshift
scale, 0 < z < ∞ corresponds to the past, whereas −1 < z < 0 for the future universe and
the present day universe marked by red shift z almost zero [37]. The logarithmic form of
q(z) corresponds to the divergence-free parametrization of the dark energy equation of state
parameter. The simplest calculations of q(z) form may provide limits on the following cases:

q(z) =

{
q0 − q1 ln 2, z → ∞ (in the early universe)
q0, z = 0, (at the present).

The H(z) and q(z) may be represented in terms of z as

H(z) = H0 exp

(∫ z

0

q(z′) + 1

z′+ 1
dz′

)
, (3.6)

where H0 indicates the current value of the Hubble parameter. On solving equations (3.5)-
(3.6), H(z) can be evaluated as

H(z) = H02
2q1(z + 1)m(z + 2)

−(z+2)q1
(z+1) , (3.7)

here m ≡ 1 + q0 + q1(1− ln 2). The equation a = a0

z+1 , for a0 = 1 implies that

d

dt
=

dz

dt

d

dz
= −(1 + z)H(z)

d

dz
,

and it can be used to obtain the following equations

Ḣ = −(z + 1)H(z)
dH

dz
, (3.8)

H ′(z) = H(z)

(
µ1

1 + z
− q1

[
ln(2 + z)

(1 + z)
+

1

(z + 1)
− (z + 2) ln(z + 2)

(1 + z)2

])
, (3.9)

where ′ denotes the derivative with respect to z. Equations (3.3) and (3.4) in form of z can
be written as

ρ =
−6µH2(z)

[2 (8π + γν) + ν (4− 3γ)]
, (3.10)
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p =
−6µH2(z)(γ − 1)

[2 (8π + γβ) + ν (4− 3γ)]
. (3.11)

On differentiating equation (3.11) with respect to z, we get

dp

dz
=

−(γ − 1)12µH ′(z)H(z)

[2 (8π + γν) + ν (4− 3γ)]
. (3.12)

3.1 Observational constraints
In this section, we use the Cosmic chronometer [38] and Pantheon [39] dataset to test the
compatibility of the Hubble parameter (3.7) with the observations.

Cosmic chronometer data: The cosmic chronometer (CC) data describes the model in-
dependent estimates of the present day Hubble parameter (H0) based on the differential
ages of the slowly evolving galaxies [38]. It consists of the 31 data points from the redshift
range 0.07 < z < 1.965. In the present analysis, we use the data compiled in [38] with the
corresponding χ2 function denoted by χ2

c as

χ2
c(θ) =

31∑
i=1

(Ht(θ, zi)−Ho(zi))
2

σ2
i

. (3.13)

Here, Ht and Ho represent the theoretical and observational values of H with σi is denoting
the observed value of errors in the corresponding Ho values. For the present parametric
model (3.7), the parameter space is θ = {H0, q0, q1}. Pantheon data: The supernovae
type Ia observations suggest that the universe expansion is accelerating [1,2]. We use the
observations from supernovae type Ia composed of redshift (z), apparent magnitude (mbobs),
and the corresponding error from the Pantheon sample [39]. We use the emcee package
[32] to conduct the MCMC analysis. In order to constrain the model parameter, we use
the theoretical apparent magnitude (mb) in terms of the Hubble free luminosity distance
DL(z). As a result, we define M ≡ M − 5 log10

(
c/H0

Mpc

)
+ 25 [36,40–43]. This parameter

is a combination of the absolute magnitude (M) of the supernovae and present day Hubble
parameter (H0). We also constrain this parameter in the present analysis. We use the
parameter M because H0 and M cannot be estimated simultaneously. We define the χ2 for
the Pantheon data denoted by χ2

p as [40–43]

χ2
p = δViCij

−1δVj , (3.14)

where Cij
−1 is inverse of total covariance matrix and δVi = mbobs −mb(zi).

Corresponding to the Pantheon dataset, the parameter space is {q0, q1,M}.
In this study, we use the Hubble parameter (3.7) to extract constraints on model parameters
{q0, q1,H0,M}. For the CC dataset, we use following priors 65 < H0 < 85, −4.0 < q0 < 2.0
and −15.0 < q1 < 3.0. In the MCMC analysis with the CC dataset, we use 36 walkers and
30000 iterations. The corresponding χ2

min value is 14.79. In this analysis, we find

H0 = 67.66± 0.83 km/s/Mpc, q0 = −0.461± 0.058, q1 = −4.41± 0.52.

We use the getdist python package [44] to plot Fig. (1). It describes the posterior phase
space of parameters subjected to the CC data.

In the standard cosmological model, the Hubble parameter for the late-time universe is

H(z) = H0

√
Ωm0(1 + z)3 +ΩΛ0,
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where Ωm0 and ΩΛ0 are matter and dark energy densities during the present time and it
follows Ωm0 + ΩΛ0 = 1. For this Λ cold dark matter (ΛCDM) model, we get χ2

min value
as 14.49 from the same dataset. We derive following constraints of ΛCDM model by CC
dataset based on MCMC analysis as H0 = 67.8± 3.0 km/s/Mpc and Ωm0 = 0.318+0.066

−0.057. It
describes the correctness of the derived results of the parametric model.

Figure 1: 1σ, 2σ contour plot for q0, q1 and H0 by using CC data

In the analysis with Pantheon data, we use the following priors −4 < q0 < 2 and
−15 < q1 < 3 and 23.0 < M < 24.0. In this analysis, we use 36 walkers and 12000
iterations. In this case, the χ2

min value is 1026.32. We obtain

q0 = −0.578± 0.095, q1 = −5.9± 2.1, M = 23.807± 0.014.

The behavior of the posterior phase space of parameters subjected to the supernovae type
Ia observations from the Pantheon sample has been given in Fig. 2. The posterior phase
space of parameters subjected to the Pantheon data clearly demonstrates the convergence
of chains in the MCMC analysis. We may use these constrained values to describe the
universe’s evolution in the further discussion.

For this Λ cold dark matter (ΛCDM) model, we get χ2
min value as 1026.67 from the

same dataset. We derive following constraints of ΛCDM model by CC dataset based MCMC
analysis as Ωm0 = 0.301± 0.022 and M = 23.810± 0.011.
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Figure 2: 1σ, 2σ contour plot for q0, q1 and M by using Pantheon data

We further derive the joint constraints on the model parameters using χ2
t = χ2

c +χ2
p. For

the parameter space {H0, q0, q1,M} using CC+Pantheon dataset, we obtain

H0 = 68.8± 1.9 km/s/Mpc, q0 = −0.557+0.072
−0.066, q1 = −5.29± 1.1, M = 23.806± 0.015.

In this analysis, we use the same priors as those of Pantheon data set analysis and run 36
walkers with 12000 iterations.

4 HDE models with f(Q, T ) gravity
We study the evolution of HDE with different IR cut-offs in the f(Q,T ) = µQ+ νT gravity
model for the deceleration parameter q given by equation (3.5).

4.1 HDE model with Granda-Oliveros (GO) cut-off
The UV cut off is related to vacuum energy, and IR cut off is related to Large scale of
Universe viz. Hubble Horizon, future event horizon or particle horizon.
The event horizon is a global concept of space-time. An event horizon is determined by
the universe’s future events and is present only if the universe continues to expand at an
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accelerated rate indefinitely [45]. Influenced by this, Granda and Oliveros [15] put forward a
new infrared cut-off for the HDE, by using the term proportional to the square of the Hubble
scale and the time-dependent derivative of the Hubble scale. IR cut-off was introduced by
Granda and Oliveros in terms of Ḣ and H2. This IR cut-off is given by [15]

LG =
(
µ2Ḣ + ν2H

2(t)
)−1

2

, (4.1)

where µ2 and ν2 both are constant variables. ρG of HDE in the GO cut off model expressed
as

ρG(t) = 3
(
µ2Ḣ(t) + ν2H

2(t)
)
. (4.2)

Eq. (4.2), in form of z becomes

ρG(z) = 3
[
−µ2(z + 1)H ′(z)H(z) + ν2H

2(z)
]
. (4.3)

By using equations (3.11) and (4.3), the DE EoS parameter is defined as

ωd =
−2µH2(z)(γ − 1)

[2 (8π + γν) + ν(4− 3γ)] [−µ2 (z + 1)H(z)H ′(z) + ν2 H2(z)]
. (4.4)

On differentiating equation (4.3), we get

dρG
dz

= 3[−µ2(z + 1)H ′′(z)H(z)− µ2(z + 1)(H ′(z))2 + (2ν − µ2)H
′(z)H(z)]. (4.5)

The classical stability parameter C2
sG(z) in this scenario may be calculated with the help of

equations (3.12) and (4.5) as

C2
sG(z) =

(1− γ)4µH′(z)H(z)

[−µ2(1 + z)H′′(z)H(z)− µ2(1 + z)(H′(z))2 + (2ν − µ2)H′(z)H(z)] [2 (8π + γν) + ν(2− 3γ)]
.

(4.6)
The evolution of ρG(z) and C2

sG(z) have been shown in Fig. (3) and (4). For this, we
take the values H0 = 67.4, q1 = −6.0, q0 = −0.585, µ2 = −0.0001, ν2 = 10.0. We have
ρG ≥ 0 which is due to Ḣ

H2 ≤ − ν2

µ2
. The present choice of µ2 and ν2 gives Ḣ

H2 ≥ 0 for
late time expansion it yields q < 0. The energy density ρRG(z) remains positive, decreasing
from relatively high values in the early universe (z ≥ 1) to lower values at later times, as z
approaches −1.

The model exhibits classical stability at the present epoch, and was stable in the past.
The behavior of adiabatic sound speed with z is given in Fig. (4).

4.2 Modified holographic Ricci dark energy (MHRDE) model
The MHRDE model is a modified version of the original holographic Ricci dark energy
model. This section focuses on the analysis of the HDE model in which the IR cut-off is
defined by the modified Ricci radius. For the MHRDE model, energy density is expressed
as

ρm(t) =
2

µ3 − ν3

(
Ḣ(t) +

3µ3

2
H2(t)

)
, (4.7)

where µ3 and ν3 are constants. In this study, the holographic principle [46] is applied
by relating the infrared cutoff L to the modified Ricci radius. We take L−2 as a linear
combination of Ḣ and H2, with this MHRDE ρm = 3C2M2

pL
−2 [16,47,48] and it lead to

the form
ρm(z) =

2

µ3 − ν3

(
3µ3

2
H2(z)− (z + 1)H ′(z)H(z)

)
, (4.8)
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Figure 3: Variation of ρG(z)(gm/cm3) Vs. z for HDE GO cut-off model for the values
H0 = 67.4, q1 = −6.0, q0 = −0.585, µ2 = −0.0001, ν2 = 10.0
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Figure 4: The evolution of C2
sG(z) for HDE of GO cut off with the values H0 = 67.4, q1 =

−6.0, q0 = −0.585, µ2 = −0.0001, ν2 = 10.0.

where H = ȧ
a is the Hubble parameter, a is scale factor and µ3, ν3 are constants. The EoS

parameter for the MHRDE model is given by

ωm(z) =
−6µH2(z)(γ − 1)(µ3 − ν3)

[2(8π + γµ) + ν(4− 3γ)] [3µ3H2(z)− 2 (z + 1)H ′(z) H(z)]
. (4.9)
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On differentiating equation (4.8) with respect to z, we get

dρm
dz

=
2

µ3 − ν3

(
(3µ3 − 1)H ′(z)H(z)− (z + 1)H ′′(z)H(z)(z)− (z + 1)(H ′(z)2)

)
. (4.10)

For MHRDE model, for this case C2
s can be expressed by using the equations (3.12) and

(4.10)

C2
s =

(1− γ) (µ3 − β3) 6µH′(z)H(z)

[2(8π + γν) + ν(4− 3γ)] {(3µ3 − 1)H′(z)H(z)− (1 + z)H′′(z) H(z)− (1 + z) (H′(z))2}
.

(4.11)
Graphs of ρm(z) and C2

s have been given in Fig (5) and (6) for the values of H0 = 67.4,
q0 = −0.585, q1 = −6, µ = 0.1, ν = 0.05, µ3 = −0.01, and ν3 = 2.00. In this case, for the
accelerating evolution of the universe we need ρm > 0. Under these conditions, the ρm(z)
is always positive and approaches to a constant value (almost zero) in the remote future.
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Figure 5: Variation of ρm(z)(gm/cm3) versus z for MHRDE model for the values H0 =
67.4, q0 = −0.585, q1 = −6, µ = 0.1, ν = 0.05, µ3 = −0.01, ν3 = 2.00

.

4.3 Rényi holographic dark energy (RHDE) model
In recent years, a few new HDE models have been evolved, such as the RHDE model [49],
Sharma-Mittal [50], and Tsallis HDE, RHDE is a more stable model among these models.
By employing a generalized form of the entropy–area relationship, the holographic dark
energy and gravity model equations can be extended. This approach motivates the use of
Rényi entropy to construct a model describing the universe’s accelerating phase.
Assume an m-state system with probability distribution Pk, where the normalization condi-
tion

∑m
k=1 Pk = 1 holds. Within this context, the Rényi and Tsallis entropies are regarded

as prominent formulations of generalized entropy [51].

SR =
1

δ
ln

m∑
k=1

P 1−δ
k , ST =

1

δ

m∑
k=1

(P
(1−δ)
k − Pk), (4.12)
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Figure 6: The evolution of C2
s (z) Vs. z is shown for MHRDE model for the values H0 =

67.4, q0 = −0.585, q1 = −6, µ = 0.1, ν = 0.05, µ3 = −0.01, ν3 = 2.00.

here δ = 1− U , U is a real variable. Combination of eq. (4.12), yields

SR =
1

δ
ln(1 + δST ), (4.13)

where δ is constant and ST is Tasllis entropy.For homogeneous systems, SR represents one of
the most general forms of entropy. It has been argued that the Bekenstein entropy (S = A

4 )
can be viewed as a special case of Tsallis entropy, leading to [52,53]

SR =
1

δ
ln

(
1 + δ

A

4

)
. (4.14)

If δ approaches to 0, then the Rényi entropy becomes

ρde =
3

8

d2

πL2

(
1 + πδL2

)−1
, (4.15)

where d2 is constant.To evaluate this equation, we employ the relations T = 1
2πL , V = 4π

3 L3,
and A = 4πL2, which are consistent with the FRW space-time. Subsequently, the RHDE
model with the GO cutoff is analyzed to study its different characteristics. Using equations
(3.14) and (4.15), the corresponding energy density for this model is obtained as

ρRG(t) =
3

8

d2

π


(
ν2H

2(t) + µ2Ḣ(t)
)2

(
µ2Ḣ(t) + ν2H2(t)

)
+ πδ

 . (4.16)

The above equation in the form of z is given by

ρRG(z) =
3

8

d2

π

{ [
ν2H

2(z)− µ2(1 + z)H ′(z)H(z)
]2

[πδ + ν2H2(z)− µ2(1 + z)H ′(z)H(z)]

}
. (4.17)
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The EoS parameter for this model with z is expressed as

ωd =
16πµH2(z)(γ − 1)

[
πδ + ν2H

2(z)− µ2(z + 1)H ′(z)H(z)
]

d2 [ν2H2(z)− µ2(z + 1)H ′(z)H(z)]
2 . (4.18)

On differentiating equation (4.17), we get

dρRG

dz
=

3

8

d2

π

{
(πδ +M)2MN −M2N

[πδ +M ]2

}
, (4.19)

where
M = ν2H

2(z)− µ2(z + 1)H ′(z)H(z),

and
N = (2ν2 − µ2)H

′(z)H(z)− µ2(z + 1)(H ′(z))2 − µ2(z + 1)H ′′(z)H(z).

The stability parameter C2
s in this case, in the form of z is obtained as

C2
S =

{
−32πα(γ − 1)H ′(z)H(z)(πδ +M)2

[2(8π + γβ) + β(4− 3γ)]MNd2[2(πδ +M)−M ]

}
. (4.20)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

10000

20000

30000

40000

50000

60000

z

ρ
G
(z
)
(g
m
/c
m
3
)

ρRG(z)

Figure 7: The evolution of ρRG(z)(gm/cm3) Vs. z for RHDE model is shown. The values
are H0 = 67.4, q1 = −6.0, q0 = −0.585, µ2 = −0.0001, ν2 = 10.0 .

4.4 Discussions
Cosmographic parameters provide model-independent information regarding the evolving
universe. The Hubble parameter characterizes the expansion history and is examined ot
derive the constraints on the model parameters. In particular, the deceleration parameter
describe the universe expansion history and relates the universe journey through different
era of thermal evolution. For example, during the radiation era, q = 1 while in the matter
dominated era, q = 0.5. The universe journey from the decelerated to accelerated expansion
era may be visualized by the signature change of q. The Fig. (10) depicts the nature of q
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Figure 8: Depict the evolution of C2
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67.4, q1 = −6.0, q0 = −0.585, µ2 = −0.0001, ν2 = 10.0.

versus z. It has been noted that the deceleration parameter q(z) is positive for high redshift
z and negative for lower z. From the plot, it can be seen that q > 0 for z > 0.5, indicating a
decelerating phase that allows the formation of cosmic structures, whereas negative values of
q correspond to the current accelerating universe. The information regarding rate of change
of deceleration parameter may be visualized by the jerk parameter q(z). The jerk parameter
in form of z is given by [54]

j(z) = (z + 1)
dq

dz
+ q(z) + 2q2(z), (4.21)

for this model it can be expressed as

j(z) = (z + 1)q1

[
(z + 1)− (z + 2) ln(z + 2)

(z + 1)2(z + 2)

]
+X + 2X2, (4.22)

where X ≡ q0 + q1

(
ln(z+2)
(z+1)

)
− q1 ln 2. The positive value of j(z) signifies the transiting

universe’s evolution.
We use the equation of state (EoS) parameter as ω = 1

3 (2q − 1) [55,56]. The variation of ω
with z has been displayed in Fig. (10). The models may be interpolate the matter-dominated
phase with the dark energy dominated phase.

The ΛCDM model possesses the matter dominated past with EoS parameter ω = 0 and
q = 0.5. In the accelerating era, one may have ω0 ≈ −0.69 and q0 ≈ −0.55 [8]. In this model,
j = 1. The ΛCDM model approaches to ω → −1, q → −1 and j = 1 in the asymptotic limit
z → −1. In contrast, the model (3.7) possess q0 = −0.585, j0 = 1.258 and ω0 = −0.7233,
during present times. The deceleration parameter suggests that the universe is accelerating
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and the universe may have the phantom evolution (with varying energy density) in the
future, since q < −1 and ω < −1. However, the model suggests that the dark energy in
these models is of the quintessence kind during the present era.

q(z)

j(z)

-1 0 1 2 3
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0

2

4

z

q
,j

z

q,j

Figure 9: The plot of q, j Vs. z.

5 Conclusions
We study a flat FRW universe model within the f(Q,T ) = µQ + νT gravity with three
holographic dark energy (HDE) models. These models have following distinct IR cutoffs:
(1) HDE with the GO cutoff, (2) MHRDE, and (3) RHDE. To analyze the cosmic evolution
in these models, we adopt an ansatz based approach for the deceleration parameter and
derive the exact solutions for the Hubble parameter, energy density and the EoS parameter
in these HDE models.

We derived form of the Hubble parameter has been scrutinized with the observational
data of CC and Pantheon datasets. We constrained the model parameter using MCMC
analysis with the supernovae type Ia data along with the Joint dataset. To illustrate the
evolution of cosmological parameters, we plotted graphs of quantities such as energy density
and the squared sound speed (C2

s ) to analyze the behavior of all three HDE models.
The key-take away about these three models has been summed up as follows:

• The Hubble parameter and deceleration parameter of the model illustrates the tran-
siting universe evolution under the influence of varying dark energy.

• The model possesses q0 = −0.585, j0 = 1.258 and ω0 = −0.7233, during present times.

• The HDE model with GO cut off has been classically stable in the past, present, as
well as in the far future. The universe for this model posses positive energy density
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during it’s evolution corresponding to various red shift values.

• The MHRDE model has been classically stable at present as well as in the future and
unstable in the past. In this model too, the energy density retains positive values
during its evolution for various redshifts.

• The RHDE model with the GO cut off is classically stable at present, in the future,
but unstable in the past. Energy density is positive for the RHDE model with the GO
cut-off.

The model illustrates the universe evolution under influence of phantom energy in future
although the universe is dominated by quintessence energy in the present times. These
aspects are clearly deviated from the standard cosmological model, where the dark energy
density follows ω = −1. In the present work, rather than constraining the model parameters
µ and ν of f(Q,T ) gravity, we treat them as free parameters according to the requirements
of the model. It is observed that the behavior of physical parameters is highly sensitive to
the values of these parameters.
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