[1] F. F. Santos, E. F. Capossoli and H. Boschi-Filho, “AdS/BCFT correspondence and BTZ black hole thermodynamics within Horndeski gravity”, Phys. Rev. D 104(6), 066014 (2021). DOI:10.1103/PhysRevD.104.066014 [arXiv:2105.03802 [hep-th]].
[2] T. Takayanagi, “Holographic Dual of BCFT”, Phys. Rev. Lett. 107, 101602 (2011). [arXiv:1105.5165 [hep-th]]. DOI:10.1103/PhysRevLett.107.101602
[3] F. F. Santos, B. Pourhassan, E. N. Saridakis, O. Sokoliuk, A. Baransky and E. O. Kahya, “Holographic boundary conformal field theory within Horndeski gravity”, JHEP 12, 217 (2025). DOI:10.1007/JHEP12(2024)217 [arXiv:2410.18781 [hep-th]].
[4] S. A. Hartnoll, “Lectures on holographic methods for condensed matter physics”, Class. Quant. Grav. 26, 224002 (2009). DOI:10.1088/0264-9381/26/22/224002 [arXiv:0903.3246 [hep-th]].
[5] M. Fujita, M. Kaminski and A. Karch, “SL(2,Z) Action on AdS/BCFT and Hall Conductivities”, JHEP 07, 150 (2012). DOI:10.1007/JHEP07(2012)150 [arXiv:1204.0012 [hep-th]].
[6] S. A. Hartnoll, C. P. Herzog and G. T. Horowitz, “Building a Holographic Superconductor”, Phys. Rev. Lett. 101, 031601 (2008). DOI:10.1103/PhysRevLett.101.031601 [arXiv:0803.3295 [hep-th]].
[7] F. F. Santos and H. Boschi-Filho, “Holographic complexity and residual entropy of a rotating BTZ black hole within Horndeski gravity”, DOI:10.22128/jhap.2025.991.1114 [arXiv:2407.10004 [hep-th]].
[8] J. M. Maldacena, “Eternal black holes in anti-de Sitter”, JHEP 04, 021 (2003). DOI:10.1088/1126-6708/2003/04/021 [arXiv:hep-th/0106112 [hep-th]].
[9] J. Maldacena and L. Susskind, “Cool horizons for entangled black holes”, Fortsch. Phys. 61, 781 (2013). DOI:10.1002/prop.201300020 [arXiv:1306.0533 [hep-th]].
[10] K. Shiozaki, H. Shapourian and S. Ryu, “Many-body topological invariants in fermionic symmetry-protected topological phases: Cases of point group symmetries”, Phys. Rev. B 95(20), 205139 (2017). DOI:10.1103/PhysRevB.95.205139 [arXiv:1609.05970 [condmat.str-el]].
[11] O. Racorean, “The non-orientable spacetime of the eternal black hole”, Phys. Lett. B 868, 139767 (2025). DOI:10.1016/j.physletb.2025.139767
[12] D. Harlow, “Jerusalem Lectures on Black Holes and Quantum Information”, Rev. Mod. Phys. 88, 015002 (2016). DOI:10.1103/RevModPhys.88.015002 [arXiv:1409.1231 [hepth]].
[13] M. Guica and S. F. Ross, “Behind the geon horizon”, Class. Quant. Grav. 32, no.5, 055014 (2015). DOI:10.1088/0264-9381/32/5/055014 [arXiv:1412.1084 [hep-th]].
[14] A. R. Brown, D. A. Roberts, L. Susskind, B. Swingle and Y. Zhao, “Holographic Complexity Equals Bulk Action?”, Phys. Rev. Lett. 116(19), 191301 (2016). DOI:10.1103/PhysRevLett.116.191301 [arXiv:1509.07876 [hep-th]].
[15] A. R. Brown, D. A. Roberts, L. Susskind, B. Swingle and Y. Zhao, “Complexity, action, and black holes”, Phys. Rev. D 93(8), 086006 (2016). DOI:10.1103/PhysRevD.93.086006 [arXiv:1512.04993 [hep-th]].
[16] D. Stanford and L. Susskind, “Complexity and Shock Wave Geometries”, Phys. Rev. D 90(12), 126007 (2014). DOI:10.1103/PhysRevD.90.126007 [arXiv:1406.2678 [hep-th]].
[17] B. Swingle, “Entanglement Renormalization and Holography”, Phys. Rev. D 86, 065007 (2012). DOI:10.1103/PhysRevD.86.065007 [arXiv:0905.1317 [cond-mat.str-el]].
[18] G. Evenbly and G. Vidal, “Tensor Network States and Geometry”, J. Statist. Phys. 145(4), 891 (2011). DOI:10.1007/s10955-011-0237-4
[19] T. Hartman and J. Maldacena, “Time Evolution of Entanglement Entropy from Black Hole Interiors”, JHEP 05, 014 (2013). DOI:10.1007/JHEP05(2013)014 [arXiv:1303.1080 [hep-th]].
[20] L. Susskind, “Entanglement is not enough”, Fortsch. Phys. 64, 49 (2016). DOI:10.1002/prop.201500095 [arXiv:1411.0690 [hep-th]].
[21] Franzoni, G. “The Klein bottle in its classical shape: a further step towards a good parametrization”, (2009). [arXiv preprint arXiv:0909.5354].
[22] El Mir, C. “Bavard’s systolically extremal Klein bottles and three dimensional applications”, Differential Geometry and its Applications, 81, 101850 (2022).
[23] F. F. Santos, “Probing the Black Hole Interior with Holographic Entanglement Entropy and the Role of AdS/BCFT Correspondence”, DOI:10.1002/prop.70031 [arXiv:2508.21224 [hep-th]].
[24] F. F. Santos and H. Boschi-Filho, “Geometric Josephson junction”, JHEP 01, 135 (2025). DOI:10.1007/JHEP01(2025)135 [arXiv:2407.10008 [hep-th]].
[25] F. F. Santos, M. Bravo-Gaete, O. Sokoliuk and A. Baransky, “AdS/BCFT Correspondence and Horndeski Gravity in the Presence of Gauge Fields: Holographic Paramagnetism/Ferromagnetism Phase Transition”, Fortsch. Phys. 71(12), 2300008 (2023). DOI:10.1002/prop.202300008 [arXiv:2301.03121 [hep-th]].
[26] F. F. Santos, M. Bravo-Gaete, M. M. Ferreira and R. Casana, “Magnetized AdS/BCFT Correspondence in Horndeski Gravity”, Fortsch. Phys. 72(7-8), 2400088 (2024). DOI:10.1002/prop.202400088 [arXiv:2310.17092 [hep-th]].
[27] S. Carlip, “The (2+1)-Dimensional black hole”, Class. Quant. Grav. 12, 2853 (1995). DOI:10.1088/0264-9381/12/12/005 [arXiv:gr-qc/9506079 [gr-qc]].
[28] M. Banados, C. Teitelboim and J. Zanelli, “The Black hole in three-dimensional spacetime”, Phys. Rev. Lett. 69, 1849 (1992). DOI:10.1103/PhysRevLett.69.1849 [arXiv:hepth/9204099 [hep-th]].
[29] T. G. Mertens and G. J. Turiaci, “Solvable models of quantum black holes: a review on Jackiw–Teitelboim gravity”, Living Rev. Rel. 26(1), 4 (2023). DOI:10.1007/s41114- 023-00046-1 [arXiv:2210.10846 [hep-th]].
[30] J. Erdmenger, A. L. Weigel, M. Gerbershagen and M. P. Heller, “From complexity geometry to holographic spacetime”, Phys. Rev. D 108(10), 106020 (2023). DOI:10.1103/PhysRevD.108.106020 [arXiv:2212.00043 [hep-th]].
[31] E. Cáceres, R. Carrasco, V. Patil, J. F. Pedraza and A. Svesko, “The landscape of complexity measures in 2D gravity”, [arXiv:2503.20943 [hep-th]].
[32] J. Erdmenger, M. Flory, M. Gerbershagen, M. P. Heller and A. L. Weigel, “Exact Gravity Duals for Simple Quantum Circuits”, SciPost Phys. 13(3), 061 (2022). DOI:10.21468/SciPostPhys.13.3.061 [arXiv:2112.12158 [hep-th]].
[33] D. A. Roberts and D. Stanford, “Two-dimensional conformal field theory and the butterfly effect”, Phys. Rev. Lett. 115(13), 131603 (2015). DOI:10.1103/PhysRevLett.115.131603 [arXiv:1412.5123 [hep-th]].
[34] S. H. Shenker and D. Stanford, “Black holes and the butterfly effect”, JHEP 03, 067 (2014). DOI:10.1007/JHEP03(2014)067 [arXiv:1306.0622 [hep-th]].
[35] N. Pinto-Neto, F. T. Falciano, R. Pereira and E. S. Santini, “The Wheeler-DeWitt Quantization Can Solve the Singularity Problem”, Phys. Rev. D 86, 063504 (2012). DOI:10.1103/PhysRevD.86.063504 [arXiv:1206.4021 [gr-qc]].
[36] H. J. Matschull, “Solutions to the Wheeler-DeWitt constraint of canonical gravity coupled to scalar matter fields”, Class. Quant. Grav. 10, L149 (1993). DOI:10.1088/0264- 9381/10/9/007 [arXiv:gr-qc/9305025 [gr-qc]].
[37] C. H. Chien, W. Song, G. Tumurtushaa and D. h. Yeom, “Quantum Resolution of Mass Inflation in Reissner-Nordström Interiors via Wheeler-DeWitt Equation”, [arXiv:2509.13483 [gr-qc]].