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Abstract. This paper presents an investigation of the relationship between the inte-
rior and exterior solutions of the BTZ black hole, emphasizing the effects of interchang-
ing spatial and temporal roles. By deriving the interior BTZ metric and its associated
thermofield double state, we uncover a duality that complements the exterior solution,
providing a comprehensive perspective on the full BTZ black hole geometry. The bulk
partition function is shown to correspond to a non-orientable spacetime, specifically a
Klein bottle, which establishes links to symmetry-protected topological (SPT) phases
characterized by orientation-reversing symmetries. These results align with recent de-
velopments in understanding entanglement and topological phases in non-orientable
geometries, as well as the role of thermofield double states in the AdS/CFT frame-
work. This work bridges black hole physics, quantum entanglement, and topological
invariants, offering fresh insights into the geometric and physical properties of non-
orientable spacetimes.
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1 Introduction

Black holes have long captivated researchers in theoretical physics, serving as a gateway to
explore the interplay between gravity, quantum mechanics, and the geometry of spacetime.
Among these, the BTZ black hole in (2+1)-dimensional anti-de Sitter (AdS) space offers a
streamlined yet powerful model for investigating questions in quantum gravity and holog-
raphy [1-7]. One of the most intriguing aspects of black hole spacetimes is the reversal of
spatial and temporal roles beyond the event horizon, a phenomenon that profoundly impacts
both classical and quantum frameworks [5,6]. This study delves into the interior solution
of the BTZ black hole, deriving its metric and examining its relationship with thermofield
double states, a key concept in the AdS/CFT correspondence [8,9].

Recent studies have highlighted the importance of non-orientable spacetimes, such as
the Klein bottle, in advancing our understanding of quantum entanglement and topological
phases of matter. These geometries naturally arise in the context of symmetry-protected
topological (SPT) phases [10], where orientation-reversing symmetries like time-reversal or
parity play a pivotal role. By analyzing the partition function of the BTZ spacetime, this
work establishes its correspondence to a non-orientable geometry [11], thereby linking black
hole physics to the study of topological invariants in many-body quantum systems.

Furthermore, thermofield double states, typically associated with the exterior solution
of the BTZ black hole, are extended here to the interior solution. This duality between the
interior and exterior solutions provides a cohesive view of the entire spacetime geometry,
enriching our understanding of black hole thermodynamics and the entanglement structure
of spacetime. These findings align with recent research on the role of thermofield double
states in holography and their capacity to connect distinct regions of spacetime [12,13].
The connections drawn between black hole physics, quantum entanglement, and topological
invariants pave the way for new investigations into the quantum structure of spacetime
[14,15].

A particularly innovative aspect of this study is the link between the duality of BTZ
black hole solutions and the concept of holographic complexity. Holographic complexity,
as previously proposed, equates the complexity of a quantum state to the bulk action of
a corresponding spacetime region [14,15]. In this context, the interior solution of the BTZ
black hole, viewed through the lens of thermofield double states, offers a natural framework
for exploring the relationship between complexity and the geometry of non-orientable space-
times. The Klein bottle geometry, emerging from the bulk partition function, suggests that
the complexity of the BTZ black hole is deeply intertwined with the spacetime’s topological
and entanglement properties.

This relationship between complexity and bulk action provides a new lens for examining
the dynamics of black hole interiors [16-20]. The reversal of spatial and temporal roles
beyond the event horizon, analyzed through the framework of holographic complexity, reveals
a richer structure within the spacetime geometry. Specifically, the non-orientable nature of
the bulk geometry implies that complexity growth in the interior is shaped by topological
invariants, potentially bridging classical and quantum descriptions of black holes.

By synthesizing concepts from non-orientable spacetimes, thermofield double states, and
holographic complexity, we provide a framework for understanding black hole geometry
and physics [14,15]. The established connections between black hole dynamics, quantum
entanglement, and topological invariants open new avenues for exploring the quantum fabric
of spacetime. Additionally, the interplay between complexity and bulk action provides a
promising direction for investigating the role of information in the evolution of black hole
interiors, shedding light on the nature of quantum gravity and the holographic principle.
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The duality between the BTZ black hole’s interior and exterior solutions, explored
through thermofield double states and their connection to non-orientable geometries like
the Klein bottle [11], aligns with prior work on holographic complexity [16]. This study
extends those ideas by linking complexity growth in black hole interiors to topological in-
variants and orientation-reversing symmetries. The Klein bottle geometry [21,22], derived
from the bulk partition function, underscores that the complexity of the BTZ black hole
is influenced not only by entanglement but also by the spacetime’s topological features.
This resonates with the assertion that "entanglement is not enough” to fully describe black
hole dynamics [20]. Moreover, the findings build on earlier studies of entanglement entropy
dynamics, proposing that the reversal of spatial and temporal roles beyond the event hori-
zon introduces a deeper structure shaped by topological invariants, bridging classical and
quantum perspectives [19].

The frameworks like entanglement renormalization and holography [17], suggesting that
the duality between the BTZ black hole’s interior and exterior solutions enhances our un-
derstanding of entanglement in non-orientable spacetimes. By incorporating tensor network
approaches [18], it highlights how such models can capture the topological constraints of
non-orientable geometries. The integration of holographic complexity, thermofield double
states, and topological invariants provides a unified framework for exploring the quantum
structure of spacetime. The Klein bottle geometry, in particular, offers a cohesive perspec-
tive on the interplay between geometry, topology, and quantum information, opening new
directions for studying the role of information and complexity in black hole physics.

2 Derivation of the Partition Function Leading to the
Klein Bottle Geometry

The partition function for the BTZ black hole can be derived by considering the Euclidean
path integral over the bulk geometry [1,12,23]. The BTZ black hole, a solution to the (2+1)-
dimensional Einstein field equations with a negative cosmological constant, provides a rich
framework for studying thermodynamics and topology in lower-dimensional gravity. The
Lorentzian metric for the BTZ black hole is given by:

2 r’ 2 dr? 2 742
ds? = — (=M + — ) dt* + — +1r°d¢?, (2.1)
L -M + =

where M is the mass of the black hole, ¢ is the AdS radius, and ¢ is the angular coordi-
nate. The parameter M determines the horizon structure of the black hole, with M > 0
corresponding to a black hole solution, M = 0 representing pure AdS space, and M < 0 de-
scribing a conical defect [7]. To compute the partition function, we perform a Wick rotation
t — 47, which transforms the metric into its Euclidean counterpart:

2 d 2
ds? = (—M + 2) drr + — 2 4 2gg2, (2.2)
] M+

The Euclidean metric describes a geometry with a compactified time coordinate 7, where the
periodicity of 7 is related to the inverse temperature of the black hole [?,4-6]. Specifically,
the periodicity 8 is determined by the requirement of regularity at the horizon [4], ensuring
the absence of conical singularities. This periodicity is given by:

22
/8 =

) (2.3)
T+
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where r; is the radius of the event horizon, satisfying 7“3 = M/{?. To introduce a non-
orientable geometry, we impose the following identifications on the Euclidean coordinates:

e (1,0) ~ (1 + B,0), where § is the inverse temperature, ensuring periodicity in the
Euclidean time direction.

e (1,0) ~ (—7,¢ + 7), introducing a time-reversal symmetry and a twist in the angular
coordinate.

These identifications result in a Klein bottle geometry [10], a non-orientable surface that
cannot be embedded in three-dimensional Euclidean space without self-intersection. The
Klein bottle geometry is particularly interesting in the context of quantum gravity and
string theory, as it encodes non-trivial topological features and parity-violating effects [4].
The partition function Z is computed as a path integral over the Klein bottle geometry:

Z = /Dge*IE[g], (2.4)

where Ig[g] is the Euclidean action. For the BTZ black hole, the Euclidean action is given
by:

1 . 2 1 )
h—le/dm@<R+ﬂ>+%GaMdm@K (2.5)

where R is the Ricci scalar, K is the extrinsic curvature, and h is the induced metric on
the boundary [24]. The first term represents the bulk contribution to the action, while the
second term accounts for the Gibbons-Hawking-York boundary term, ensuring a well-defined
variational principle. To evaluate the Euclidean action explicitly, we note that the Ricci
scalar for the BTZ black hole is constant and given by R = —6/¢2. The extrinsic curvature
K and the induced metric A on the boundary depend on the specific boundary conditions
imposed [1,2]. For the Klein bottle geometry, the boundary conditions are modified by the
non-orientable identifications, leading to a distinct contribution to the action. The bulk
term of the action can be computed as:

1, 4
Ibulk = m /d x\/§< £2> s (26)

where the integration is performed over the entire Euclidean manifold. The boundary term,
on the other hand, involves the extrinsic curvature K, which depends on the embedding of
the boundary in the bulk geometry. For the BTZ black hole [7], the boundary is typically
taken at a large radial coordinate r = ro,, where the induced metric approaches that of
the asymptotic AdS boundary. The partition function Z encodes both the topological and
thermodynamic properties of the system [25,26]. The non-orientable nature of the Klein
bottle geometry introduces parity-violating effects, which are reflected in the thermodynamic
quantities derived from Z. For instance, the free energy F' is related to the partition function
by:

F:_%mz (2.7)

and the entropy S can be computed using the thermodynamic relation:

OF w22
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The Klein bottle geometry also has implications for the holographic dual description of the
BTZ black hole in the context of the AdS/CFT correspondence [10]. The non-orientable
identifications correspond to specific deformations of the dual conformal field theory [11],
which can be studied to gain insights into the interplay between topology and quantum
gravity. The entropy is proportional to the area of the event horizon (S = ”225) with (ry =
2712 /3), which suggests that the interior of the black hole contributes to the thermodynamic
state of the system. This aligns with the Bekenstein-Hawking entropy, where the entropy is
a measure of the information content or degrees of freedom associated with the black hole’s
interior [8,9,19]. Besides, the Klein bottle geometry introduces non-orientable identifications
in the Euclidean path integral, which affect the exterior geometry. These identifications
encode parity-violating effects and modify the thermodynamic quantities, such as the free
energy and entropy, in the exterior region. This could have implications for the dual CFT,
where the non-orientable geometry corresponds to specific deformations or twists in the field
theory [3].

3 Derivation of the Interior BTZ Metric

The derivation of the interior BTZ black hole metric involves a careful analysis of the space-
time geometry within the event horizon [19,23]. The BTZ black hole, a solution to the
(2+1)-dimensional Einstein field equations with a negative cosmological constant, exhibits
a rich structure that mirrors many features of higher-dimensional black holes, such as hori-
zons and thermodynamic properties. The interior solution is obtained by interchanging the
roles of the temporal and radial coordinates, reflecting the causal structure of the black hole
interior, where the radial coordinate becomes timelike and the temporal coordinate becomes
spacelike [12,23].

e Exterior Metric
The exterior metric of the BTZ black hole is given by:

2 d 2
ds? = — (—M + Z) a2+ — 244,
l -M+ =
where M is the mass of the black hole, £ is the AdS radius related to the cosmological
constant by A = —1/¢2, and ¢ is the angular coordinate. The event horizon is located

at r, = £v/ M, where the metric coefficient —M + Z—z vanishes.

e Interior Metric
. . . . . . 2
To describe the interior region, we redefine the radial coordinate as r’ = /M — 7,

which effectively interchanges the roles of ¢t and r. This transformation leads to the
interior metric:
r? dt?
ds* = <M — ) dr* — ——— +r%d¢?.
M-

In this region, the radial coordinate r becomes timelike, and the temporal coordinate ¢
becomes spacelike. This reversal of roles is a hallmark of black hole interiors, where the
singularity at » = 0 acts as a temporal boundary rather than a spatial one. The causal
structure of the BTZ black hole can be visualized using a Penrose diagram [27,28], which
compactifies the spacetime and highlights the relationships between different regions, such
as the exterior, interior, and singularity. The Penrose diagram for the BTZ black hole
resembles that of a higher-dimensional Schwarzschild-AdS black hole, with the following key
features:
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e The event horizon separates the exterior and interior regions.
e The singularity at » = 0 is a spacelike boundary in the interior.
¢ The asymptotic boundary at r — oo corresponds to the AdS boundary.

To construct the Penrose diagram, we perform a series of coordinate transformations to bring
the metric into a conformally compactified form. This involves introducing null coordinates
u=t—r, and v =t + r,, where r, is the tortoise coordinate defined by:

7‘*:/7(17’ 2. (31)
-M+ 5%

The compactified coordinates 4 and v are then defined as:
@ = arctan(u), o = arctan(v), (3.2)

which maps the infinite spacetime into a finite region. The resulting Penrose diagram cap-
tures the global structure of the BTZ black hole, including the event horizon, singularity,
and AdS boundary Fig. 1.

AdS Boundary

Inteior

Singularity

Exterior

Event Horizon

Figure 1: Penrose diagram for the BTZ black hole. It illustrates the causal structure,
including the event horizon, singularity, and AdS boundary.

The interior metric highlights the dynamical nature of the black hole interior, where
the radial coordinate evolves toward the singularity. This behavior is consistent with the
general relativistic prediction that the interior of a black hole is causally disconnected from
the exterior, with all timelike trajectories inevitably terminating at the singularity. The
BTZ black hole, despite its lower-dimensional nature, provides a valuable testing ground for
understanding black hole interiors and their thermodynamic and quantum properties [27,28].
Furthermore, the thermofield double (TFD) state for the BTZ black hole scenario, including
both the interior and exterior solutions, is constructed in the context of the AdS/CFT
correspondence [14-16]. The thermofield double (TFD) state is a maximally entangled state
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that connects two copies of a quantum system, often referred to as the "left” and "right”
systems [3]. In the context of the BTZ black hole, the TFD state is dual to the eternal black
hole geometry in AdS space. The TEFD state is written as:

TFD(8)) = S e PP @ [nh g, (3.3)

\ﬁ

where: 3 = 1/T is the inverse temperature, E,, are the energy eigenvalues of the system, |n)r,
and |n)p are the energy eigenstates of the left and right systems, Z(8) =Y., e #F» is the
partition function [29-32]. This state encodes the entanglement between the two boundaries
of the AdS spacetime, corresponding to the two asymptotic regions of the eternal black hole.
The exterior solution corresponds to the region r > ry, where 7y = ¢v/M is the event
horizon radius. The TFD state for the exterior is constructed by associating the left and
right boundaries of the AdS spacetime with the two entangled systems. The entanglement
entropy of the TFD state is proportional to the area of the event horizon, consistent with
the Bekenstein-Hawking entropy:

Area  2mry
Sen anglement — — & — . 3.4
tanglement = TG T 4G (3:4)

The interior of the BTZ black hole is obtained by interchanging the roles of ¢t and r in the
metric, where » < r4. In this region, the radial coordinate r becomes timelike, and the time
coordinate t becomes spacelike. This reversal of roles has profound implications for the TFD
state [33,34]. To extend the TFD state to the interior, we consider the analytic continuation
of the exterior solution across the event horizon. The interior region corresponds to a
continuation of the entangled state, where the roles of time and space are reversed. The
TFD state now encodes correlations between the interior and exterior regions, as well as
between the left and right boundaries. The extended TFD state can be written as:

|TFD _/BE /2 |n>ext & |n>1nt7 (35)

(8)) = ﬁz

where |[n)ext and |n)in, are the energy eigenstates associated with the exterior and interior
regions, respectively.

4 Holographic Complexity in the Klein Bottle Geome-
try

The Klein bottle geometry introduces a novel framework for understanding holographic
complexity in the context of the BTZ black hole. Unlike orientable geometries [11], the Klein
bottle’s non-orientable nature fundamentally alters the structure of the Wheeler-DeWitt
(WDW) patch and its associated on-shell action [14,15]. The Wheeler-DeWitt (WDW)
patch is a key construct in holographic complexity [7], defined as the region of spacetime
bounded by null surfaces emanating from a boundary time slice. For the BTZ black hole,
the WDW patch typically spans the interior and exterior regions of the spacetime, capturing
the causal structure of the black hole. However, when the partition function is extended to
the Klein bottle geometry, the WDW patch must account for the non-orientable nature of
the spacetime.

In the Klein bottle geometry, the WDW patch includes contributions from both ori-
entable and non-orientable regions [35]. This reflects the unique topology of the Klein



90 Fabiano F. Santos and

bottle Fig. 2, where orientation-reversing symmetries, such as time-reversal or parity, play
a central role. The inclusion of non-orientable regions introduces additional complexity to
the computation of the on-shell action, as the geometry cannot be globally embedded in a
higher-dimensional Euclidean space.

Klein Bottle Geometry with Orientable and Non-Orientable Regions

Figure 2: 3D visualization of the Klein bottle and the Wheeler-DeWitt patch. Orientable
Region: defined as the region where the Klein bottle behaves like an orientable surface (e.g.,
u € [0, 7]), which is plotted in blue for clarity. Non-Orientable Region: defined as the region
where the Klein bottle exhibits non-orientable behavior (e.g., u € [, 27]), which is plotted in
orange for contrast. The Wheeler-DeWitt Patch: highlighted in red to show its contribution
across both regions.

The on-shell action for the WDW patch is given by:

2
IWDW = 160G bW d3$\/§ (R + €—2> 5 (41)
where R is the Ricci scalar, £ is the AdS radius, and g is the determinant of the metric. For
the Klein bottle geometry, the evaluation of this action reveals how the complexity depends
on the topological invariants of the spacetime.

The Klein bottle’s non-orientable nature introduces additional boundary terms in the
action, arising from the orientation-reversing identifications. These terms encode the topo-
logical invariants of the Klein bottle, such as the Euler characteristic and the Md&bius-like
structure of the spacetime [36,37]. Specifically, the Euler characteristic ¢ of the Klein bottle
is zero, reflecting its non-orientable topology. This contrasts with orientable geometries,
such as the torus, where ¢ = 0 arises from a different topological structure.

The holographic complexity, computed using the action proposal [14,15], is proportional
to the on-shell action of the WDW patch:

_ Iwpw
JELLE (4.2)

For the Klein bottle geometry, the complexity is influenced by the interplay between the
bulk curvature R, the AdS radius ¢, and the topological invariants of the spacetime. The
non-orientable nature of the Klein bottle introduces additional contributions to the com-
plexity, which can be interpreted as arising from the orientation-reversing symmetries of
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the spacetime. These contributions highlight the role of topology in shaping the growth of
complexity in black hole interiors. The reversal of spatial and temporal roles beyond the
event horizon, combined with the non-orientable geometry of the Klein bottle, suggests that
complexity growth is not solely determined by entanglement but also by the topological fea-
tures of the spacetime. This aligns with recent assertions that "entanglement is not enough”
to describe black hole dynamics fully.

5 Conclusions and Discussions

In this work, we have explored the intricate connections between symmetry-protected topo-
logical (SPT) phases and their potential correspondence with black hole physics. By delving
into the mathematical and physical frameworks underlying these phenomena, we have uncov-
ered a rich interplay between topological invariants, symmetry constraints, and the emergent
properties of quantum systems. This study not only broadens our understanding of SPT
phases but also opens new avenues for investigating their implications in high-energy physics
and quantum gravity.

One of the key takeaways from this analysis is the realization that SPT phases, char-
acterized by their robust topological invariants, may provide a novel perspective on the
microstates of black holes. The correspondence between these phases and black hole en-
tropy suggests that the topological invariants associated with SPT systems could serve as
a bridge to understanding the microscopic degrees of freedom responsible for black hole
thermodynamics. This connection hints at a deeper unification of condensed matter physics
and gravitational theories, where the tools and concepts from one domain can illuminate
the mysteries of the other.

Furthermore, the study raises intriguing questions about the physical consequences of
SPT phases in measurable contexts. For instance, the black hole correspondence could
imply the existence of experimentally accessible invariants that manifest in condensed matter
systems. These invariants, rooted in the topological properties of the system, might be
detectable through advanced techniques such as quantum transport measurements, edge
state spectroscopy, or non-local correlation functions. Such measurable quantities could
provide indirect evidence for the theoretical link between SPT phases and black hole physics,
offering a tangible pathway to test these ideas in laboratory settings.

Another significant implication of this work is the potential for SPT phases to inform
the search for quantum gravity signatures. The robustness of topological invariants under
perturbations suggests that they could play a role in stabilizing quantum states in extreme
gravitational environments, such as near black hole horizons. This stability might be re-
flected in the behavior of quantum fields or particles in these regions, providing a unique
signature that could be probed through astrophysical observations or high-energy experi-
ments.
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