[1] J. D. Bekenstein, “Black Holes and Entropy”, Phys. Rev. D 7(8), 2333 (1973). DOI: 10.1103/PhysRevD.7.2333
[2] S. W. Hawking, “Particle Creation by Black Holes”, Commun.Math.Phys. 43, 199 (1975). DOI: 10.1007/BF02345020
[3] G. ’t Hooft, “Dimensional reduction in quantum gravity”, Conf. Proc. C 930308, 284 (1993). [arXiv:gr-qc/9310026]
[4] L. Susskind, “Strings, black holes and Lorentz contraction”, Phys. Rev. D 49, 6606 (1994). DOI: 10.1103/PhysRevD.49.6606
[5] J. M. Maldacena, “The large N limit of superconformal field theories and supergravity”, Adv.Theor.Math.Phys. 2, 231 (1998). [arXiv:hep-th/9711200]
[6] E. Witten, “Anti-de Sitter space and holography”, Adv.Theor.Math.Phys. 2, 253 (1998). [arXiv:hep-th/9802150]
[7] S. S. Gubser, I. R. Klebanov, A. M. Polyakov, “Gauge theory correlators from noncritical string theory”, Phys.Lett.B 428, 105 (1998). [arXiv:hep-th/9802109]
[8] A. Bagchi, A. Banerjee, P. Dhivakar, S. Mondal, and A. Shukla, “The Carrollian Kaleidoscope”, (2025). [arXiv:2506.16164 [hep-th]]
[9] A. Strominger, Lectures on the Infrared Structure of Gravity and Gauge Theory, Princeton University Press, (2017). [arXiv:1703.05448 [hep-th]]
[10] A. Strominger, “The dS / CFT correspondence”, JHEP 10, 034 (2001). DOI: 10.1088/1126-6708/2001/10/034
[11] L. Susskind, “De Sitter Holography: Fluctuations, Anomalous Symmetry, and Wormholes”, Universe 7(12), 464 (2021). DOI: 10.3390/universe7120464
[12] M. T. Anderson, “On boundary value problems for Einstein metrics”, Geom.Topol. 12(4), 2009 (2008)
[13] E. Witten, “A note on boundary conditions in Euclidean gravity”, Rev.Math.Phys. 33(10), 2140004 (2021). DOI: 10.1142/S0129055X21400043
[14] A. Parvizi, M. M. Sheikh-Jabbari, and V. Taghiloo, “Freelance Holography, Part I: Setting Boundary Conditions Free in Gauge/Gravity Correspondence”, (2025). [arXiv:2503.09371 [hep-th]]
[15] A. Parvizi, M. M. Sheikh-Jabbari, and V. Taghiloo, “Freelance Holography, Part II: Moving Boundary in Gauge/Gravity Correspondence”, (2025). [arXiv:2503.09372 [hepth]]
[16] J. Lee and R. M. Wald, “Local symmetries and constraints”, J.Math.Phys. 31, 725 (1990). DOI: 10.1063/1.528801
[17] V. Iyer and R. M. Wald, “Some properties of Nöther charge and a proposal for dynamical black hole entropy”, Phys. Rev. D 50, 846 (1994). [arXiv:gr-qc/9403028]
[18] R. M. Wald and A. Zoupas, “A General definition of ’conserved quantities’ in general relativity and other theories of gravity”, Phys. Rev. D 61, 084027 (2000). DOI: 10.1103/PhysRevD.61.084027
[19] H. Adami, M. M. Sheikh-Jabbari, and V. Taghiloo, “Gravity Is Induced By Renormalization Group Flow”, (2025). [arXiv:2508.09633 [hep-th]]
[20] E. Witten, “Multitrace operators, boundary conditions, and AdS / CFT correspondence”, (2001). [arXiv:hep-th/0112258]
[21] C. Fefferman and C. R. Graham, “Conformal invariants”, in *Élie Cartan et les Math- ématiques d’aujourd’hui*, Astérisque 1985, 95 (1985)
[22] J. D. Brown and J. W. York Jr., “Quasilocal energy and conserved charges derived from the gravitational action”, Phys. Rev. D 47, 1407 (1993)
[23] T. Hartman, J. Kruthoff, E. Shaghoulian, and A. Tajdini, “Holography at finite cutoff with a T 2 deformation”, JHEP 03, 004 (2019). DOI: 10.1007/JHEP03(2019)004
[24] M. Taylor, “T T¯ deformations in general dimensions”, Adv.Theor.Math.Phys. 27(1), 37 (2023). DOI: 10.4310/ATMP.2023.v27.n1.a2
[25] L. McGough, M. Mezei, and H. Verlinde, “Moving the CFT into the bulk with T T ”, JHEP 04, 010 (2018). DOI: 10.1007/JHEP04(2018)010
[26] V. Balasubramanian and P. Kraus, “A stress tensor for anti-de Sitter gravity”, Commun.Math.Phys. 208, 413 (1999). [arXiv:hep-th/9902121]
[27] R. Emparan, C. V. Johnson, and R. C. Myers, “Surface terms as counterterms in the AdS/CFT correspondence”, Phys. Rev. D 60, 104001 (1999). [arXiv:hep-th/9903238]
[28] X. Liu, J. E. Santos, and T. Wiseman, “New Well-Posed boundary conditions for semiclassical Euclidean gravity”, JHEP 06, 044 (2024). DOI: 10.1007/JHEP06(2024)044
[29] M. Guica and R. Monten, “T T¯ and the mirage of a bulk cutoff”, SciPost Phys. 10(2), 024 (2021). DOI: 10.21468/SciPostPhys.10.2.024
[30] S. de Haro, S. N. Solodukhin, and K. Skenderis, “Holographic reconstruction of spacetime and renormalization in the AdS/CFT correspondence”, Commun. Math. Phys. 217, 595 (2001). DOI: 10.1007/s002200100381, [arXiv:hep-th/0002230]