Freelance Holography

Document Type : Regular article

Author

School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395–5531, Tehran, Iran; Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), P.O. Box 45137–66731, Zanjan, Iran

Abstract

In this paper, we introduce the Freelance Holography Program, an extension of the AdS/CFT correspondence within the saddle-point approximation that opens several novel directions. This framework generalizes holography beyond the asymptotic AdS boundary, allowing it to be formulated on arbitrary timelike hypersurfaces in the bulk. Moreover, it accommodates arbitrary boundary conditions for bulk fields, moving beyond the standard Dirichlet prescription. As part of this development, we construct a one-parameter family of renormalized boundary conditions that, unlike conventional choices in the literature, lead to a finite on-shell action. We also explore intriguing consequences of the framework, including the emergence of induced gravity and the flow of boundary conditions under holographic renormalization.

Keywords

Main Subjects

 

Article PDF

[1] J. D. Bekenstein, “Black Holes and Entropy”, Phys. Rev. D 7(8), 2333 (1973). DOI: 10.1103/PhysRevD.7.2333
[2] S. W. Hawking, “Particle Creation by Black Holes”, Commun.Math.Phys. 43, 199 (1975). DOI: 10.1007/BF02345020
[3] G. ’t Hooft, “Dimensional reduction in quantum gravity”, Conf. Proc. C 930308, 284 (1993). [arXiv:gr-qc/9310026]
[4] L. Susskind, “Strings, black holes and Lorentz contraction”, Phys. Rev. D 49, 6606 (1994). DOI: 10.1103/PhysRevD.49.6606
[5] J. M. Maldacena, “The large N limit of superconformal field theories and supergravity”, Adv.Theor.Math.Phys. 2, 231 (1998). [arXiv:hep-th/9711200]
[6] E. Witten, “Anti-de Sitter space and holography”, Adv.Theor.Math.Phys. 2, 253 (1998). [arXiv:hep-th/9802150]
[7] S. S. Gubser, I. R. Klebanov, A. M. Polyakov, “Gauge theory correlators from noncritical string theory”, Phys.Lett.B 428, 105 (1998). [arXiv:hep-th/9802109]
[8] A. Bagchi, A. Banerjee, P. Dhivakar, S. Mondal, and A. Shukla, “The Carrollian Kaleidoscope”, (2025). [arXiv:2506.16164 [hep-th]]
[9] A. Strominger, Lectures on the Infrared Structure of Gravity and Gauge Theory, Princeton University Press, (2017). [arXiv:1703.05448 [hep-th]]
[10] A. Strominger, “The dS / CFT correspondence”, JHEP 10, 034 (2001). DOI: 10.1088/1126-6708/2001/10/034
[11] L. Susskind, “De Sitter Holography: Fluctuations, Anomalous Symmetry, and Wormholes”, Universe 7(12), 464 (2021). DOI: 10.3390/universe7120464
[12] M. T. Anderson, “On boundary value problems for Einstein metrics”, Geom.Topol. 12(4), 2009 (2008)
[13] E. Witten, “A note on boundary conditions in Euclidean gravity”, Rev.Math.Phys. 33(10), 2140004 (2021). DOI: 10.1142/S0129055X21400043
[14] A. Parvizi, M. M. Sheikh-Jabbari, and V. Taghiloo, “Freelance Holography, Part I: Setting Boundary Conditions Free in Gauge/Gravity Correspondence”, (2025). [arXiv:2503.09371 [hep-th]]
[15] A. Parvizi, M. M. Sheikh-Jabbari, and V. Taghiloo, “Freelance Holography, Part II: Moving Boundary in Gauge/Gravity Correspondence”, (2025). [arXiv:2503.09372 [hepth]]
[16] J. Lee and R. M. Wald, “Local symmetries and constraints”, J.Math.Phys. 31, 725 (1990). DOI: 10.1063/1.528801
[17] V. Iyer and R. M. Wald, “Some properties of Nöther charge and a proposal for dynamical black hole entropy”, Phys. Rev. D 50, 846 (1994). [arXiv:gr-qc/9403028]
[18] R. M. Wald and A. Zoupas, “A General definition of ’conserved quantities’ in general relativity and other theories of gravity”, Phys. Rev. D 61, 084027 (2000). DOI: 10.1103/PhysRevD.61.084027
[19] H. Adami, M. M. Sheikh-Jabbari, and V. Taghiloo, “Gravity Is Induced By Renormalization Group Flow”, (2025). [arXiv:2508.09633 [hep-th]]
[20] E. Witten, “Multitrace operators, boundary conditions, and AdS / CFT correspondence”, (2001). [arXiv:hep-th/0112258]
[21] C. Fefferman and C. R. Graham, “Conformal invariants”, in *Élie Cartan et les Math- ématiques d’aujourd’hui*, Astérisque 1985, 95 (1985)
[22] J. D. Brown and J. W. York Jr., “Quasilocal energy and conserved charges derived from the gravitational action”, Phys. Rev. D 47, 1407 (1993)
[23] T. Hartman, J. Kruthoff, E. Shaghoulian, and A. Tajdini, “Holography at finite cutoff with a T 2 deformation”, JHEP 03, 004 (2019). DOI: 10.1007/JHEP03(2019)004
[24] M. Taylor, “T T¯ deformations in general dimensions”, Adv.Theor.Math.Phys. 27(1), 37 (2023). DOI: 10.4310/ATMP.2023.v27.n1.a2
[25] L. McGough, M. Mezei, and H. Verlinde, “Moving the CFT into the bulk with T T ”, JHEP 04, 010 (2018). DOI: 10.1007/JHEP04(2018)010
[26] V. Balasubramanian and P. Kraus, “A stress tensor for anti-de Sitter gravity”, Commun.Math.Phys. 208, 413 (1999). [arXiv:hep-th/9902121]
[27] R. Emparan, C. V. Johnson, and R. C. Myers, “Surface terms as counterterms in the AdS/CFT correspondence”, Phys. Rev. D 60, 104001 (1999). [arXiv:hep-th/9903238]
[28] X. Liu, J. E. Santos, and T. Wiseman, “New Well-Posed boundary conditions for semiclassical Euclidean gravity”, JHEP 06, 044 (2024). DOI: 10.1007/JHEP06(2024)044
[29] M. Guica and R. Monten, “T T¯ and the mirage of a bulk cutoff”, SciPost Phys. 10(2), 024 (2021). DOI: 10.21468/SciPostPhys.10.2.024
[30] S. de Haro, S. N. Solodukhin, and K. Skenderis, “Holographic reconstruction of spacetime and renormalization in the AdS/CFT correspondence”, Commun. Math. Phys. 217, 595 (2001). DOI: 10.1007/s002200100381, [arXiv:hep-th/0002230]
Volume 5, Issue 4
October 2025
Pages 68-81
  • Receive Date: 14 August 2025
  • Revise Date: 13 September 2025
  • Accept Date: 13 September 2025