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Abstract. In this paper, we introduce the Freelance Holography Program, an exten-
sion of the AdS/CFT correspondence within the saddle-point approximation that opens
several novel directions. This framework generalizes holography beyond the asymptotic
AdS boundary, allowing it to be formulated on arbitrary timelike hypersurfaces in the
bulk. Moreover, it accommodates arbitrary boundary conditions for bulk fields, moving
beyond the standard Dirichlet prescription. As part of this development, we construct
a one-parameter family of renormalized boundary conditions that, unlike conventional
choices in the literature, lead to a finite on-shell action. We also explore intriguing
consequences of the framework, including the emergence of induced gravity and the
flow of boundary conditions under holographic renormalization.
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1 Introduction

Motivated by the Bekenstein-Hawking formula for black hole entropy [1,2], ’t Hooft and
Susskind proposed the holographic principle: a theory of quantum gravity in d+1 dimensions
can be described by a non-gravitational quantum field theory in d dimensions [3,4]. Its best-
understood realization is the AdS/CFT correspondence, which posits that quantum gravity
in asymptotically anti-de Sitter (AdS) spacetime is dual to a conformal field theory (CFT)
on the AdS boundary [5-7].

Despite its wide applicability, the AdS/CFT correspondence has several notable limi-
tations: 1) It applies specifically to asymptotically AdS spacetimes. 2) As we will review,
the duality requires Dirichlet boundary conditions for bulk fields on the asymptotic timelike
boundary. 3) The dual non-gravitational theory is defined only on the asymptotic boundary
of AdS. Various efforts have addressed the first issue by extending holography to spacetimes
with alternative asymptotics—for instance, codimension-one and codimension-two hologra-
phy in asymptotically flat spacetimes [8,9], and constructions in asymptotically de Sitter
(dS) spacetimes using different frameworks [10,11].

In this work, we focus on limitations (2) and (3). We develop a framework that extends
holography in the saddle-point approximation, where the bulk theory is classical and the
boundary theory is in the large- N limit. This framework accommodates arbitrary boundary
conditions for bulk fields at the asymptotic boundary of AdS. More significantly, we go
beyond the standard setup by introducing finite-cutoff holography, which proposes a duality
between a finite region of AdS—bounded by a timelike cutoff surface—and a boundary theory
defined on that finite-radius hypersurface. As a further step, we extend this to allow arbitrary
boundary conditions on the cutoff surface. We call this generalized approach Freelance
Holography, as it frees the AdS/CFT correspondence from the constraints of fixed boundary
conditions and a fixed asymptotic boundary, broadening the holographic paradigm.

A central motivation for developing holography with arbitrary boundary conditions, par-
ticularly at a finite radial position, stems from the well-posedness of gravitational boundary
value problems. While Dirichlet boundary conditions at the asymptotic AdS boundary yield
a well-posed problem, it has been shown that imposing Dirichlet boundary conditions at a
finite radial position does not generally lead to a well-posed boundary value problem [12,13].
However, there is evidence that other classes of boundary conditions, such as the seminal
conformal boundary condition [12,13], do result in well-posed dynamics. This observation
implies that constructing finite-cutoff holography based solely on Dirichlet boundary condi-
tions is fundamentally problematic. Consequently, a more general formulation of finite-cutoff
holography—one that allows for non-Dirichlet boundary conditions—is not only natural but
also necessary.

The foundational ideas and technical framework of freelance holography were first de-
veloped in [14,15], building on the covariant phase space formalism (CPSF) [16-18]. As
a striking application, we have recently shown that gravity is not fundamental but rather
emerges through the renormalization group flow of the boundary theory [19].

In this letter, we revisit the program from a fresh perspective, deliberately avoiding
CPSF to reduce technical overhead and present new proofs, making the framework more
accessible to a broader range of researchers. We emphasize the constrained nature of the
boundary deformation flow equation and highlight how boundary gravity emerges naturally
through this flow in arbitrary spacetime dimensions. Furthermore, we clarify the distinction
between renormalized and unrenormalized boundary conditions, discussing their fundamen-
tal differences. Together, these developments provide a streamlined and deeper presentation
of freelance holography and its underlying principles.
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2 Review on gauge/gravity correspondence

In this section, we briefly review the AdS/CFT duality [5-7] in the saddle-point approxi-
mation, where the bulk is a weakly coupled classical theory and the boundary theory is in
the large-V limit. In this regime, the correspondence reduces to the equality of the on-shell
actions in bulk and boundary theories

Sl?dry[j; E] = S}:[))ulk[j; M] . (21)

The right-hand side represents the on-shell action of (d+1)-dimensional gravity in asymp-
totically AdS spacetime

S5l 75 M) = [ Lkl 22)

Here, M is the bulk spacetime, J the bulk fields, and the superscript “D” indicates Dirichlet
boundary conditions on the AdS boundary ¥ = oM

8J(r, sca)‘E =0, J(r, a:a)‘z = rdA T (1), (2.3)

Here, r,, denotes the asymptotic limit » — oo, corresponding to the AdS timelike boundary

¥ 1. The parameter A is the scaling dimension of the momentum conjugate to J. J(z%)

depends only on boundary coordinates and is non-dynamical due to the Dirichlet condition.
We now turn to the left-hand side of the AdS/CFT dictionary (2.1)

By [T 5] = Sepald™] + / VAT O], (2.4)

In this expression, Scpr is the action of a conformal field theory on the AdS boundary, with

dynamical variables ¢(z®). The second term is a single-trace deformation of the CFT action,

where J is the source (or coupling) for the gauge-invariant operator O[¢] built from ¢. The

factor /=7 is the determinant’s square root of the induced conformal boundary metric 2.
In the saddle-point approximation, the field ¢ satisfies the saddle-point equation

6Scrr[¢] — 00[¢"]
5o v

Thus, ¢* in (2.4) denotes the boundary field satisfying the above saddle-point equation.
We conclude by emphasizing that the function J in the bulk Dirichlet boundary condition

(2.3) acts as a source or coupling in the boundary theory (2.4). In other words, the bulk

field’s boundary value serves as an external source for the corresponding CF'T operator.

=0 = ¢ =9¢"[J]. (2.5)

3 Holography with arbitrary boundary condition

As reviewed, the standard AdS/CFT formulation imposes Dirichlet boundary conditions on
bulk fields. Here, we show how holography in the saddle-point approximation extends to
arbitrary boundary conditions. The key claim is: modifying bulk boundary conditions cor-
responds to introducing multitrace deformations in the dual theory. This was first proposed
in [20], and we provide a simple derivation.

1Bulk coordinates are z# = 7, 2%, with r the radial direction and z® the boundary coordinates (a =
0,...,d—1).

2The boundary induced metric is hgp, and 7, its conformal representative, related by hqp = Tgo'yab. The
bulk line element is in equation (5.2).
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We start by asking how to modify bulk field boundary conditions. The answer is simple:
add a boundary term to the bulk action. Specifically, we consider the modified action

ST M) = / LU, LY = LD 0, (3.1)
M

Here, Loun® is the bulk Lagrangian with Dirichlet boundary conditions. Adding the total
derivative OuW* defines a new action £ . While this does not change bulk equations, it
modifies boundary conditions, called W-type. By choosing W# appropriately, we can move
from Dirichlet to Neumann, mixed, and other boundary conditions. Examples appear in
Section 6.

To understand the boundary interpretation of this modification, we start from the Dirich-
let AdS/CFT correspondence in the saddle-point approximation (2.1) and include the same
boundary term on both sides. This yields

Sy [T5 ] = Sl M ] (32)

where the right-hand side is the modified bulk action compatible with W-type boundary
condition, defined in (3.1). On the left-hand side, the boundary action becomes

Sy T3 5] = SB[ 5] + / n W (3.3)

where, n,dz# = dr is the unnormalized normal one-form to the AdS boundary X. The key
point is that while the W-term appears as a codimension-one boundary term from the bulk
perspective, it is codimension-zero from the boundary viewpoint, and thus acts as a genuine
deformation of the boundary theory.

To complete the picture, we rewrite the W-term—originally in bulk variables—in terms
of boundary ones, using the AdS/CFT dictionary for the required identifications

J(z) = rggAJ(roo,za) , Oz = TOAO O(To0, %), (3.4)

The left-hand side gives the boundary source and operator, while the right-hand side shows
the corresponding bulk fields near the boundary. Using this dictionary to rewrite the W-term
in (3.3) completes its interpretation as a multitrace deformation of the boundary action.

4 Finite cutoff holography

In the previous section, we generalized the AdS/CFT correspondence at the saddle-point
level to accommodate arbitrary boundary conditions for bulk fields at the asymptotic AdS
boundary. In this section, we take a further step by extending the correspondence to a finite
radial position, thereby formulating a holographic framework at a finite cutoff.

We begin by outlining the geometric setup. Let M be a (d+1)-dimensional asymptoti-
cally AdS spacetime with timelike boundary > = OM. To introduce a finite radial cutoff,
we foliate the bulk by codimension-one hypersurfaces 3(r), defined as constant-r slices with
r € (ro,00). Each X(r) partitions spacetime, and we define the enclosed region as M(r),
so that OM(r) = 3(r) (see Fig. 1). Our aim is to formulate a holographic correspondence
between M(r) and its boundary X(r)—effectively shifting the AdS boundary inward. In the
limit » — oo, we recover the standard setup: M(r) - M and X(r) — X.
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M

Figure 1: Portion of an asymptotically AdS spacetime [19]: the shaded region M(r) is enclosed by
a timelike surface >)(r). The full cylinder M denotes the global asymptotically AdS spacetime, with its

asymptotic timelike boundary labeled X.

We are now ready to develop finite cutoff holography in the saddle-point approximation.
As reviewed, this limit reduces the standard correspondence to on-shell action equality. A
similar relation is naturally expected at finite radial position

Sthut M(r)] = Stary [5(r)] - (4.1)

This relation was explicitly derived in [15] by starting from the standard AdS/CFT corre-
spondence and applying covariant phase space techniques. The left-hand side of equation
(4.1) has a clear interpretation—it is the on-shell bulk action evaluated in the region M(r)

S M(r)] = / ar / o Chae (4.2)

Analogous to the gauge/gravity correspondence at the asymptotic boundary (2.3), the bulk
fields are required to satisfy Dirichlet boundary conditions on the finite cutoff surface X(r)
J(r,z%) 5r) =247 (r, 2%, 0T (r,x®) =0. (4.3)
T
We now turn to the right-hand side of (4.1): how is the boundary theory defined on the
cutoff surface X(r)? As we will show, it corresponds to a specific multitrace deformation of
the original theory on ¥. To derive the associated deformation flow equation, we consider
the radial evolution of the on-shell bulk action.
Starting with a diffeomorphism-invariant theory on M(r), its variation under a general
diffeomorphism gives

O Spunc M (r)] = /Z( : 1§ Lo - (4.4)
Choosing & = 0, this becomes
d D D
5Sbulk[M(T)] = L - (4.5)
(r)

Using the finite-distance holographic relation (4.1), we arrive at the flow equation

d
— Shae [ 2(r)] = Lo,
qr Obd y[2(r)] ) bul

k on-shell ’
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This equation is particularly noteworthy because both sides are defined on the same hyper-
surface 3(r). It captures how the boundary theory deforms as we move radially into the
bulk, with r serving as the deformation parameter. Being a first-order differential equation,
its solution is uniquely determined once an initial condition is specified

i 584,y [S()] = Sy (5] (47)
Note that the right-hand side is determined using the standard gauge/gravity duality (2.1).
The remaining task is to rewrite the right-hand side of (4.6), currently in bulk variables, in
terms of boundary field theory data. Motivated by the scaling in (3.4), we introduce the
following rescaled variables

J(r,z%) = rdiAJ(r, ), O(r,z%) = rA O(r,z%). (4.8)

We now derive a more explicit form of the boundary deformation. Recall that the
variation of the on-shell bulk action under a diffeomorphism can also be written as

S Spunc(r) = ) V—hOdeJ, (4.9)

where O is the radial canonical momentum conjugate to J. Setting £ = 0, gives radial flow

%Sﬁdry[E(r)] [ VZhoa.J. (4.10)
=(r)

Since O is the radial momentum conjugate to J, we expect 0,J ~ O, which implies

d ., 9
dT,dery[Z(T)]N/E(T)\/ThO . (411)

This suggests that the boundary multitrace deformation induced by radial evolution is pro-
portional to the square of the momentum O2. In the case of pure gravity, where the mo-
mentum conjugate to the metric is the energy-momentum tensor, this structure directly
resembles the TT deformation. As we will show below, this identification holds exactly.

So far, we have formulated finite cutoff holography with Dirichlet boundary conditions.
We now extend this to arbitrary boundary conditions on X(r) by adding [, ) 0, W* to both

sides of equation (4.6). Then,

d 4
— by = hd 4.12
ar dery[ (r)] ) Ly onshell ( )
where the right-hand side follows from (3.1), and the left-hand side is given by
Stary [2(r)] = Spary [E(r)] + WIE(r)] . (4.13)

This yields a generalized deformation flow equation at finite cutoff, now accommodating
arbitrary boundary conditions. Its solution is fixed by the initial condition

Tll}Igo Sl\))iiry [E(T)] = Sl\;‘(/iry [E] = Sk?dry [Z] + W[E} ) (414)

where Spy, [¥] follows from standard AdS/CFT, and W[X] encodes the chosen boundary
condition. In the next section, we illustrate this with an explicit example.
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We conclude this section with a comment on boundary Ward identities. In developing
finite-cutoff holography, we first considered the variation of the bulk on-shell action under
radial diffeomorphisms, which leads to the deformation flow equation (4.6). We now turn
to generic diffeomorphisms tangential to the boundary, satisfying fﬁ n, = 0. From (4.5), we
then conclude that, for tangential diffeomorphisms:

OeShuncM(r)] =0 = 0eSiary [3(r)] = 0. (4.15)

This equation guarantees the invariance of the boundary theory under tangential diffeomor-
phisms. In contrast, normal diffeomorphisms induce boundary deformations, as described
by (4.6). This behavior is a direct consequence of introducing a boundary, which reduces
the full bulk diffeomorphism invariance to tangential diffeomorphisms at the boundary.
Equation (4.15) then directly gives rise to the boundary Ward identities.

5 Example: Einstein’s gravity

Thus far, our construction has been presented in an abstract setting. To demonstrate its
broad applicability, we now turn to a concrete example: pure Einstein gravity.

The Einstein—Hilbert action with a negative cosmological constant, compatible with
Dirichlet boundary conditions on a (d + 1)-dimensional region M(r), is

1 dd—1
stalMl = [ tpwe=g [ v (e M) [ vERRL 6
M(r) M(r) =(r)

where ¢ is the AdS radius. The boundary term is the Gibbons-Hawking—York (GHY)
term, ensuring a well-defined variational principle with Dirichlet conditions. We adopt the
Fefferman—Graham gauge [21], where the bulk line element takes the form

[2
ds® = - dr? + hay(r, ) dz®da® . (5.2)
T

The on-shell variation of the action yields

1
6Shun M (r)] =—3 V—=hT" 6hay, (5.3)

on-shell 2 o(r)
where T is the Brown-York energy-momentum tensor (BY-EMT) [22]
T% = K% — Kht | Ko = & Ovhab , (5.4)

with K the extrinsic curvature of ¥(r) and K := h% K. The BY-EMT is the canonical
conjugate to the induced metric hyp on 3(r). Equation (5.3) shows the action is stationary
under variations dh,, vanishing on the boundary, as required by Dirichlet conditions.
Performing a 1 + d decomposition of Einstein’s equations along the foliation by hyper-
surfaces X(r) yields the system
d(d—1)
Rt =
VTP =0, (5.5b)

TT,
%&Tab — 2T The + i — TThay — Ray =0, (5.5¢)

+1T' =0, (5.5a)

T
Tarh,ab =2 (Tab — d—lhab> y (55d)
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where the last line defines T,,; R and R, are the Ricci scalar and tensor of the induced
metric hgp, and V, is the covariant derivative compatible with hqp,. The quantity 77" is a
covariant generalization of the TT operator to d dimensions [23,24], defined as

1
T =TTy, — ﬁTZ ) (5.6)

As discussed in (4.11), the deformation action is quadratic in the canonical momentum.
For GR, starting from (4.10), we find (4.10) for GR

d = '
a _ ! —h T 0.h
d’l" Sbulk [M (T)] on-shell 2 /2(7") \/7 a "
_ _{ \/thab Kab
T Js(r)
E | i (5.7)
= [ VIR (T~ ——ha
T Js(r) i-1

——2 [ v,
" Js(r)

In the second and third lines, we used the definitions of the extrinsic curvature and the BY-
EMT given in (5.4), while in the final line we employed the definition of the TT operator
from (5.6). Finally, invoking the finite-distance holographic relation (4.1), we obtain

d . L —
SR [5()] = E/Z(T)HZT. (5:8)

This foundational statement shows the TT deformation of the boundary theory admits a
holographic interpretation as the radial flow of the AdS boundary into the bulk [23-25]. We
have derived it explicitly within the saddle-point approximation in arbitrary dimensions.

6 Comments on boundary deformation flow

In this section, we discuss key aspects of the boundary deformation flow equation (5.8).

Gravity is induced by renormalization group flow. One important point to note
is that the deformation flow equation (5.8) is subject to a constraint: it must satisfy the
Hamiltonian constraint (5.5a). By incorporating this condition, the flow equation can be
recast in the following form

d ., B d(d—1)
radery[Z(T)] = Zmﬂ (R+ e2> . (6.1)

This fundamental result shows that the TT deformation (5.8) can be expressed geometrically,
revealing a deep gravitational interpretation. Since the radial direction r encodes the RG flow
from UV (AdS boundary) to IR (bulk), equation (6.1) implies gravity emerges dynamically
along the RG flow of the originally non-gravitational boundary theory. In other words,
gravity on the cutoff surface 3(r) is induced by the boundary deformation, highlighting the
emergent nature of gravitational dynamics in holography [19].
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Renormalized deformation flow equation. In the previous section, we used the gravi-
tational action (5.1), compatible with Dirichlet boundary conditions but yielding a divergent
on-shell value as r — oco. To regularize, appropriate counterterms must be added [26,27]

SeMO) = staMe)+ [ VRS 62

where the ellipsis represents additional curvature terms required in higher dimensions. In-
cluding these counterterms leads to the renormalized boundary flow equation
d — a
St S == ¢ [ VBT st T, (6.3

=(r)

where Ty is the renormalized Brown-York energy-momentum tensor (rBY-EMT), given by

Tab _ Tab + Tab

ct )

d—1 ‘
7% = e’ — — 2G“b SR (6.4)

4 d

In equation (6.3), TT = T T, — d—il’Tz denotes the renormalized version of the TT operator
introduced in (5.6), and S,y is the Schouten tensor

1 R
Sab— m (Rab_Q(d_l)hab> d>2a & Sab—o d=2. (65)

Other boundary conditions. A natural way to generalize the gravitational variational
principle is by adding boundary terms that modify the boundary conditions. A well-known
example is the one-parameter family [28]

SpunM(1)] = SpunM(r)] + w V-hK, (6.6)

=(r)

where K is the extrinsic curvature’s trace and w characterizes the boundary condition.
However, this class generally does not yield a finite on-shell action. Except for Dirichlet
(w = 0), the necessary counterterms to cancel divergences are unknown. Hence, we call
these unrenormalized boundary conditions.

To overcome this, we define a family of renormalized boundary conditions [14]

Shu[M(r)] = Spun M (r)] + w V=hT, (6.7)

3(r)

where T is the trace of the rBY-EMT (6.4). Special w values correspond to known boundary
conditions: 0 (Dirichlet), 1 (Neumann), and 2 (conformal). Other w define a generalized
class of renormalized conformal-type boundary conditions [28]. Crucially, this formulation
ensures a finite on-shell action and consistent variational principle for any w.

Starting from the action (6.7) with renormalized boundary conditions, we obtain the
corresponding renormalized boundary flow equation

d . l
T@dery[z(r)] =3

V—h (2+wdw)77'+2(1+wdw>7-
2 s 2 )7

(6.8)
+ 02 — dw)Sap T — 2w (S S™ — S%) + -+ } .
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Boundary condition flow. In this letter, we showed that the TT deformation of the
boundary theory leads to a finite cutoff formulation of holography. As a final remark, we
highlight an equivalent perspective: the TT deformation can be seen as modifying bulk
field boundary conditions. This was developed in the first part of the freelance holography
program, showing that any multitrace boundary deformation corresponds to a bulk bound-
ary condition change. Since TT is a specific multitrace deformation, it induces a flow from
Dirichlet to a mixed boundary condition at the asymptotic boundary 3. Determining this
mixed condition involves solving the radial evolution of Einstein’s equations. In three dimen-
sions, this flow was explicitly worked out in [29], while its higher-dimensional generalization
is currently being developed perturbatively.

7 Summary and outlook

In this paper, we introduced the Freelance Holography program—an extension of the Ad-
S/CFT correspondence within the saddle-point approximation—that generalizes holography
to arbitrary timelike boundaries and boundary conditions. In contrast to [14,15], where the
framework was developed within the full covariant phase space formalism, here we pursued
a more direct route, streamlining the arguments and supplying alternative proofs so as to
highlight the conceptual structure without unnecessary technical overhead.

We explored several key aspects of this framework. First, we emphasized the constrained
nature of the boundary deformation flow equation, stressing that it must be analyzed in
conjunction with both the Hamiltonian and momentum constraints. Second, we highlighted
the natural emergence of boundary gravity along the RG flow in arbitrary spacetime dimen-
sions, reinforcing the perspective that gravity is induced rather than fundamental. Third,
we clarified the distinction between renormalized and unrenormalized boundary conditions,
demonstrating their essential differences and their implications for holography at finite cut-
off.

A particularly striking implication of this approach is its reinterpretation of the renormal-
ization group: by identifying radial flow in the bulk with deformation flow in the boundary
theory, gravity emerges not as a fundamental force but as a collective effect induced by quan-
tum field theoretic data. We believe this RG-based perspective may lead to a significant
shift in how we understand Wilsonian renormalization in the presence of gravity.

As a final point, we comment on how radiative modes—i.e., the bulk propagating modes
or “news”—are encoded in the boundary theory. In our setup, the bulk gravitational de-
grees of freedom are fully captured by the boundary data. Working in the Fefferman—
Graham gauge, these reduce to the conformal boundary metric and the holographic energy—
momentum tensor, with the latter subject to both Hamiltonian and momentum constraints
[30]. Under Dirichlet boundary conditions, all radiative content is encoded in the bound-
ary energy—momentum tensor. Being symmetric in d dimensions, this tensor initially has
d(d + 1)/2 components; the trace constraint removes one, and the momentum constraints
remove another d, leaving exactly w independent components, matching the expected
number of bulk gravitons in D = d + 1 dimensions. For more general boundary conditions,
these propagating modes are distributed between the boundary metric and the stress tensor,
but the total count of independent radiative modes remains unchanged, demonstrating the
robustness of this identification across different boundary prescriptions.

The Freelance Holography program is still in its early stages, with numerous open di-
rections ranging from formal development to concrete applications. We hope that the per-
spective developed here will serve as a foundation for further progress in understanding
holography beyond the traditional AdS/CFT setup.
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