[1] DESI Collaboration, “Data Release 1 of the Dark Energy Spectroscopic Instrument”, [arXiv:2503.14745 [astro-ph.CO]].
[2] DESI Collaboration, “DESI DR2 Results II: Measurements of Baryon Acoustic Oscillations and Cosmological Constraints”, [arXiv:2503.14738 [astro-ph.CO]].
[3] The Atacama Cosmology Telescope DR6, “The Atacama Cosmology Telescope: DR6 Constraints on Extended Cosmological Models”, [arXiv:2503.14454 [astro-ph.CO]].
[4] A. H. Chamseddine and V. Mukhanov, “Mimetic dark matter”, J. High Energy Phys. 2013, 135 (2013) DOI: 10.1007/JHEP11(2013)135.
[5] A. H. Chamseddine and V. Mukhanov, “Resolving cosmological singularities”, J. Cosmol. Astropart. Phys. 2017 (03), 9 (2017) DOI: 10.1088/1475-7516/2017/03/009.
[6] A. H. Chamseddine and V. Mukhanov, “Nonsingular black hole”, Eur. Phys. J. C 77, 183 (2017) DOI: 10.1140/epjc/s10052-017-4749-1.
[7] A. Casalino, M. Rinaldi, L. Sebastiani and S. Vagnozzi, “Mimicking dark matter and dark energy in a mimetic model compatible with GW170817”, Phys. Dark Universe 22, 108 (2018) DOI: 10.1016/j.dark.2018.10.001.
[8] A. Casalino, M. Rinaldi, L. Sebastiani and S. Vagnozzi, “Alive and well: Mimetic gravity and a higher-order extension in light of GW170817”, Class. Quantum Gravity 36, 17001 (2019) DOI: 10.1088/1361-6382/aaf186.
[9] A. H. Chamseddine, V. Mukhanov and A. Vikman, “Cosmology with Mimetic Matter”, J. Cosmol. Astropart. Phys. 2014 (06), 17 (2014) DOI: 10.1088/1475- 7516/2014/06/017.
[10] S. Capozziello, J. Matsumoto, S. Nojiri and S. Odintsov, “Dark energy from modified gravity with Lagrange multipliers”, Phys. Lett. B 693, 198 (2010) DOI: 10.1016/j.physletb.2010.08.026.
[11] N. Afshordi, A. Ashtekar, E. Barausse and E. Berti et al., “Black Holes Inside and Out 2024: visions for the future of black hole physics”, [arXiv:2410.14414 [gr-qc]].
[12] S. Nojiri and S. D. Odintsov, “Mimetic f(R) gravity: inflation, dark energy and bounce”, [arXiv:1408.3561 [hep-th]].
[13] S. Nojiri, S. D. Odintsov and V. K. Oikonomou, “Modified gravity theories on a nutshell: Inflation, bounce and late-time evolution”, Phys. Rep. 692, 1 (2017) DOI: 10.1016/j.physrep.2017.06.001.
[14] N. Sadeghnezhad and K. Nozari, “Braneworld Mimetic Cosmology”, Phys. Lett. B 769, 134 (2017) DOI: 10.1016/j.physletb.2017.03.044.
[15] N. Hosseinkhan and K. Nozari, “Late time cosmological dynamics with a nonminimal extension of the mimetic matter scenario”, Eur. Phys. J. Plus 133, 50 (2018) DOI: 10.1140/epjp/i2018-11873-7.
[16] K. Nozari and N. Sadeghnezhad, “Braneworld mimetic f(R) gravity”, Int. J. Geom. Methods Mod. Phys. 16, 1950042 (2019) DOI: 10.1142/S0219887819500428.
[17] K. Nozari and N. Rashidi, “Mimetic DBI Inflation in Confrontation with Planck2018 data”, Astrophys. J. 882, 68 (2019) DOI: 10.3847/1538-4357/ab3295.
[18] N. Rashidi and K. Nozari, “Viable intermediate inflation in the mimetic DBI model”, Eur. Phys. J. C 81, 834 (2021) DOI: 10.1140/epjc/s10052-021-09648-x.
[19] A. V. Astashenok, S. D. Odintsov and V. K. Oikonomou, “Modified Gauss-Bonnet gravity with the Lagrange multiplier constraint as mimetic theory”, Class. Quantum Gravity 32, 185007 (2015) DOI: 10.1088/0264-9381/32/18/185007.
[20] S. Nojiri, S. D. Odintsov and V. K. Oikonomou, “Viable mimetic completion of unified inflation-dark energy evolution in modified gravity”, Phys. Rev. D 94, 104050 (2016) DOI: 10.1103/PhysRevD.94.104050.
[21] M. A. Gorji, A. Allahyari, M. Khodadi and H. Firouzjahi, “Mimetic black holes”, Phys. Rev. D 101, 124060 (2020) DOI: 10.1103/PhysRevD.101.124060.
[22] S. Nojiri and G. G. L. Nashed, “Consistency between black hole and mimetic gravity- Case of (2+1)-dimensional gravity”, Phys. Lett. B 830, 137140 (2022) DOI: 10.1016/j.physletb.2022.137140.
[23] K. S. Stelle, “Renormalization of higher-derivative quantum gravity”, Phys. Rev. D 16, 953 (1977) DOI: 10.1103/PhysRevD.16.953.
[24] M. Tang and Z. Xu, “The no-hair theorem and black hole shadows”, J. High Energy Phys. 2022, 12 (2022) DOI: 10.1007/JHEP03(2022)012.
[25] H. Luckock and I. Moss, “Black holes have skyrmion hair”, Phys. Lett. B 176, 341 (1986) DOI: 10.1016/0370-2693(86)90172-1.
[26] M. S. Volkov and D. V. Galtsov, “Non-Abelian Einstein Yang-Mills black holes”, JETP Lett. 50, 346 (1989).
[27] J. D. Bekenstein, “Black holes with scalar charge”, Ann. Phys. (N. Y). 91, 75 (1975) DOI: 10.1016/0003-4916(75)90112-0.
[28] J. D. Bekenstein, “Novel ’no-scalar-hair’ theorem for black holes”, Phys. Rev. D 51, R6608 (1995) DOI: 10.1103/PhysRevD.51.R6608.
[29] P. Kanti, N. E. Mavromatos, J. Rizos, K. Tamvakis and E. Winstanley, “Dilatonic black holes in higher curvature string gravity”, Phys. Rev. D 54, 5049 (1996) DOI: 10.1103/PhysRevD.54.5049.
[30] R. R. Metsaev and A. A. Tseytlin, “Order alpha-prime (two-loop) equivalence of the string equations of motion and the Sigma Model Weyl invariance conditions: Dependence on the dilaton and the antisymmetric tensor”, Nucl. Phys. B 293, 385 (1987) DOI: 10.1016/0550-3213(87)90077-2.
[31] G. W. Horndeski, “Second-order scalar-tensor field equations in a four-dimensional space”, Int. J. Theor. Phys. 10, 363 (1974) DOI: 10.1007/BF01807638.
[32] A. Nicolis, R. Rattazzi and E. Trincherini, “Galileon as a local modification of gravity”, Phys. Rev. D 79, 064036 (2009) DOI: 10.1103/PhysRevD.79.064036.
[33] L. Hui and A. Nicolis, “No-Hair Theorem for the Galileon”, Phys. Rev. Lett. 110, 241104 (2013) DOI: 10.1103/PhysRevLett.110.241104.
[34] T. P. Sotiriou and V. Faraoni, “Black Holes in Scalar-Tensor Gravity”, Phys. Rev. Lett. 108, 081103 (2012) DOI: 10.1103/PhysRevLett.108.081103.
[35] T. P. Sotiriou and S.-Y. Zhou, “Black Hole Hair in Generalized Scalar-Tensor Gravity”, Phys. Rev. Lett. 112, 251102 (2014) DOI: 10.1103/PhysRevLett.112.251102.
[36] E. Babichev and C. Charmousis, “Dressing a black hole with a time-dependent Galileon”, J. High Energy Phys. 2014, 106 (2014) DOI: 10.1007/JHEP08(2014)106.
[37] D. D. Doneva and S. S. Yazadjiev, “New Gauss-Bonnet Black Holes with CurvatureInduced Scalarization in Extended Scalar-Tensor Theories”, Phys. Rev. Lett. 120, 131103 (2018) DOI: 10.1103/PhysRevLett.120.131103.
[38] C. A. R. Herdeiro and E. Radu, “Asymptotically flat black holes with scalar hair: a review”, [arXiv:1504.08209 [gr-qc]].
[39] P. A. González, E. Papantonopoulos, J. Saavedra and Y. Vásquez, “Extremal hairy black holes”, J. High Energy Phys. 2014, 1 (2014) DOI: 10.1007/JHEP12(2014)001.
[40] S. R. Dolan, S. Ponglertsakul and E. Winstanley, “Stability of black holes in Einsteincharged scalar field theory in a cavity”, Phys. Rev. D 92, 124047 (2015) DOI: 10.1103/PhysRevD.92.124047.
[41] D. Lovelock, “The Einstein tensor and its generalizations”, J. Math. Phys. 12, 498 (1971) DOI: 10.1063/1.1665613.
[42] C. A. Lanczos, “Remarkable Property of the Riemann-Christoffel Tensor in Four Dimensions”, Ann. Math. 39, 842 (1938) DOI: 10.2307/1968467.
[43] D. G. Boulware and S. Deser, “String-Generated Gravity Models”, Phys. Rev. Lett. 55, 2656 (1985) DOI: 10.1103/PhysRevLett.55.2656.
[44] R. C. Myers and J. Z. Simon, “Black-hole thermodynamics in Lovelock gravity”, Phys. Rev. D 38, 2434 (1988) DOI: 10.1103/PhysRevD.38.2434.
[45] Y. M. Cho and I. P. Neupane, “Anti-de Sitter black holes, thermal phase transition, and holography in higher curvature gravity”, Phys. Rev. D 66, 024044 (2002) DOI: 10.1103/PhysRevD.66.024044.
[46] C. Sahabandu, P. Suranyi, C. Vaz and L. C. R. Wijewardhana, “Thermodynamics of static black objects in D dimensional Einstein-Gauss-Bonnet gravity with D-4 compact dimensions”, Phys. Rev. D 73, 044009 (2006) DOI: 10.1103/PhysRevD.73.044009.
[47] A. Kumar, D. V. Singh and S. G. Ghosh, “Hayward black holes in Einstein-GaussBonnet gravity”, Ann. Phys. 419, 168214 (2020) DOI: 10.1016/j.aop.2020.168214.
[48] S. G. Ghosh and S. D. Maharaj, “Cloud of strings for radiating black holes in Lovelock gravity”, Phys. Rev. D 89, 084027 (2014) DOI: 10.1103/PhysRevD.89.084027.
[49] S. Capozziello and G. G. L. Nashed, “Charged spherically symmetric black holes in scalar-tensor Gauss-Bonnet gravity”, Class. Quantum Gravity 40, 205023 (2023) DOI: 10.1088/1361-6382/acf2d0.
[50] A. Sheykhi, “Mimetic gravity in f(R)-dimensions”, J. High Energy Phys. 2021, 043 (2021) DOI: 10.1007/JHEP01(2021)043.
[51] L. Sebastiani, S. Vagnozzi and R. Myrzakulov, “Mimetic Gravity: A Review of Recent Developments and Applications to Cosmology and Astrophysics”, Adv. High Energy Phys. 2017, 3156915 (2017) DOI: 10.1155/2017/3156915.
[52] J. Kaplan and J. Wang, “An Effective Theory for Holographic RG Flows”, [arXiv:1406.4152 [hep-th]].
[53] N. Behr and A. Mukhopadhyay, “Holography as a highly effcient renormalization group flow. I. Rephrasing Gravity”, Phys. Rev. D 94, 026001 (2016) DOI: 10.1103/PhysRevD.94.026001.
[54] N. Behr and A. Mukhopadhyay, “Holography as a highly effcient renormalization group flow. II. An explicit construction”, Phys. Rev. D 94, 026002 (2016) DOI: 10.1103/PhysRevD.94.026002.
[55] H. Adami, M. M. Sheikh-Jabbari and V. Taghiloo, “Gravity Is Induced By Renormalization Group Flow”, [arXiv:2508.09633 [hep-th]].
[56] I. Papadimitriou, “Lectures on Holographic Renormalization”, in Theoretical Frontiers in Black Holes and Cosmology, Springer Proc. Phys. 176, 131 (2016) DOI: 10.1007/978- 3-319-31352-8_4.
[57] K. Skenderis, “Lecture Notes on Holographic Renormalization”, Class. Quantum Gravity 19, 5849 (2002) DOI: 10.1088/0264-9381/19/22/306.
[58] B.-B. Wei, Z.-F. Jiang and R.-B. Liu, “Thermodynamic holography”, Sci. Rep. 5, 15077 (2015) DOI: 10.1038/srep15077.
[59] K. L. Panigrahi and B. Singh, “Holographic Extended Thermodynamics of deformed AdS-Schwarzschild black hole”, [arXiv:2508.14873 [hep-th]].
[60] M. Zhang et al., “Finite-cutoff Holographic Thermodynamics”, [arXiv:2507.01010 [hepth]].
[61] B. Pourhassan et al., “Holographic Thermodynamics of an Enhanced Charged AdS Black Hole in String Theory’s Playground”, J. Hologr. Appl. Phys. 4, 15 (2024).
[62] B. Pourhassan and S. Upadhyay, Thermodynamics of Quantum Black Holes: Holography, Damghan University Press, 2024.
[63] A. Bakopoulos, G. Antoniou and P. Kanti, “Novel black-hole solutions in Einsteinscalar-Gauss-Bonnet theories with a cosmological constant”, Phys. Rev. D 99, 064003 (2019).
[64] G. Nashed, “Charged and Non-Charged Black Hole Solutions in Mimetic Gravitational Theory”, Symmetry 10, 559 (2018).
[65] C. Tsallis and L. J. L. Cirto, “Black hole thermodynamical entropy”, Eur. Phys. J. C 73, 2487 (2013).
[66] F. Bajardi, K. F. Dialektopoulos and S. Capozziello, “Higher Dimensional Static and Spherically Symmetric Solutions in Extended Gauss–Bonnet Gravity”, Symmetry 12, 372 (2020).
[67] G. Antoniou, A. Bakopoulos and P. Kanti, “Black-Hole Solutions with Scalar Hair in Einstein-Scalar-Gauss-Bonnet Theories”, Phys. Rev. D 97, 084037 (2018).
[68] A. Bakopoulos et al., “Black holes with primary scalar hair”, Phys. Rev. D 109, 024032 (2024).
[69] A. Sheykhi and S. Grunau, “Topological black holes in mimetic gravity”, Int. J. Mod. Phys. A 36, 2150186 (2021).
[70] G. G. L. Nashed and S. Nojiri, “Black holes with Lagrange multiplier and potential in mimetic-like gravitational theory: multi-horizon black holes”, J. Cosmol. Astropart. Phys. 2022, 011 (2022).
[71] A. H. Rezaei and K. Nozari, “Joule–Thomson expansion in a mimetic black hole”, Sci. Rep. 14, 19475 (2024).
[72] M. Cvetič and S. Nojiri, “Black hole thermodynamics and negative entropy in de Sitter and anti-de Sitter Einstein-Gauss-Bonnet gravity”, Nucl. Phys. B 628, 295 (2002).
[73] D. V. Singh, V. Bhardwaj and S. Upadhyay, “Thermodynamic properties, thermal image and phase transition of Einstein-Gauss-Bonnet black hole coupled with nonlinear electrodynamics”, Eur. Phys. J. Plus 137, 126 (2022).
[74] G. W. Gibbons and R. E. Kallosh, “Topology, entropy, and Witten index of dilaton black holes”, Phys. Rev. D 51, 2839 (1995).
[75] S. W. Hawking and D. N. Page, “Thermodynamics of black holes in anti-de Sitter space”, Commun. Math. Phys. 87, 577 (1983).
[76] J. W. York, “Black hole in thermal equilibrium with a scalar field: The back-reaction”, Phys. Rev. D 31, 775 (1985).
[77] A. Teimouri, “Entropy of non-local gravity”, [arXiv:1705.11164 [hep-th]].
[78] V. Iyer and R. M. Wald, “Some properties of the Noether charge and a proposal for dynamical black hole entropy”, Phys. Rev. D 50, 846 (1994).
[79] J. D. Brown and J. W. York, “The Microcanonical functional integral. 1. The Gravitational field”, Phys. Rev. D 47, 1420 (1993).
[80] M. Bañados, C. Teitelboim and J. Zanelli, “The Black Hole in Three Dimensional Space Time”, Phys. Rev. Lett. 69, 1849 (1992).
[81] L. Susskind and J. Uglum, “Black Hole Entropy in Canonical Quantum Gravity and Superstring Theory”, Phys. Rev. D 50, 2700 (1994).
[82] D. Garfinkle, S. B. Giddings and A. Strominger, “Entropy in Black Hole Pair Production”, Phys. Rev. D 49, 958 (1994).
[83] J. Diaz-Alonso and D. Rubiera-Garcia, “Thermodynamic analysis of black hole solutions in gravitating nonlinear electrodynamics”, Gen. Relativ. Gravit. 45, 1901 (2013).