Mimetic Black Holes in Einstein-Scalar-Gauss-Bonnet Gravity

Document Type : Regular article

Authors

1 Department of Theoretical Physics, Faculty of Basic Sciences, University of Mazandaran, P.O.Box-47416-95447, Babolsar, Iran

2 Department of Theoretical Physics, Faculty of Basic Sciences, University of Mazandaran, P. O. Box-47416-95447, Babolsar, Iran

Abstract

In this paper, we try to extend the intriguing concept of mimetic black holes to the realm of the Gauss-Bonnet Gravity. Mimetic black holes are a fascinating theoretical construct that mimic the exterior gravitational field of known black holes even without possessing an event horizon in some specific conditions. By incorporating the Gauss-Bonnet theory, we aim to investigate how the dynamics and properties of mimetic black holes are altered in this modified gravitational framework. In this particular setting, we explore the existence of black hole solutions with nontrivial scalar hair while being influenced by the mimetic scalar field in the Einstein Scalar-Gauss-Bonnet (ESGB) theory. These solutions are characterized by their regularity and offer new insights into the dynamics of black holes in this theory. We proceed by conducting an analytical study in the near horizon asymptotic regime when an event horizon cab be existed. Our analysis reveals that in this setup a black hole event horizon with a nontrivial hair can be formed, regardless of the sign of the Lagrange multipliers λ, depending on the particular selection of the coupling between the scalar field and the Gauss-Bonnet term. Notably, this black hole horizon remains regular, emphasizing the robustness of the black hole solutions in this setup.

Keywords

Main Subjects

 

Article PDF

[1] DESI Collaboration, “Data Release 1 of the Dark Energy Spectroscopic Instrument”, [arXiv:2503.14745 [astro-ph.CO]].
[2] DESI Collaboration, “DESI DR2 Results II: Measurements of Baryon Acoustic Oscillations and Cosmological Constraints”, [arXiv:2503.14738 [astro-ph.CO]].
[3] The Atacama Cosmology Telescope DR6, “The Atacama Cosmology Telescope: DR6 Constraints on Extended Cosmological Models”, [arXiv:2503.14454 [astro-ph.CO]].
[4] A. H. Chamseddine and V. Mukhanov, “Mimetic dark matter”, J. High Energy Phys. 2013, 135 (2013) DOI: 10.1007/JHEP11(2013)135.
[5] A. H. Chamseddine and V. Mukhanov, “Resolving cosmological singularities”, J. Cosmol. Astropart. Phys. 2017 (03), 9 (2017) DOI: 10.1088/1475-7516/2017/03/009.
[6] A. H. Chamseddine and V. Mukhanov, “Nonsingular black hole”, Eur. Phys. J. C 77, 183 (2017) DOI: 10.1140/epjc/s10052-017-4749-1.
[7] A. Casalino, M. Rinaldi, L. Sebastiani and S. Vagnozzi, “Mimicking dark matter and dark energy in a mimetic model compatible with GW170817”, Phys. Dark Universe 22, 108 (2018) DOI: 10.1016/j.dark.2018.10.001.
[8] A. Casalino, M. Rinaldi, L. Sebastiani and S. Vagnozzi, “Alive and well: Mimetic gravity and a higher-order extension in light of GW170817”, Class. Quantum Gravity 36, 17001 (2019) DOI: 10.1088/1361-6382/aaf186.
[9] A. H. Chamseddine, V. Mukhanov and A. Vikman, “Cosmology with Mimetic Matter”, J. Cosmol. Astropart. Phys. 2014 (06), 17 (2014) DOI: 10.1088/1475- 7516/2014/06/017.
[10] S. Capozziello, J. Matsumoto, S. Nojiri and S. Odintsov, “Dark energy from modified gravity with Lagrange multipliers”, Phys. Lett. B 693, 198 (2010) DOI: 10.1016/j.physletb.2010.08.026.
[11] N. Afshordi, A. Ashtekar, E. Barausse and E. Berti et al., “Black Holes Inside and Out 2024: visions for the future of black hole physics”, [arXiv:2410.14414 [gr-qc]].
[12] S. Nojiri and S. D. Odintsov, “Mimetic f(R) gravity: inflation, dark energy and bounce”, [arXiv:1408.3561 [hep-th]].
[13] S. Nojiri, S. D. Odintsov and V. K. Oikonomou, “Modified gravity theories on a nutshell: Inflation, bounce and late-time evolution”, Phys. Rep. 692, 1 (2017) DOI: 10.1016/j.physrep.2017.06.001.
[14] N. Sadeghnezhad and K. Nozari, “Braneworld Mimetic Cosmology”, Phys. Lett. B 769, 134 (2017) DOI: 10.1016/j.physletb.2017.03.044.
[15] N. Hosseinkhan and K. Nozari, “Late time cosmological dynamics with a nonminimal extension of the mimetic matter scenario”, Eur. Phys. J. Plus 133, 50 (2018) DOI: 10.1140/epjp/i2018-11873-7.
[16] K. Nozari and N. Sadeghnezhad, “Braneworld mimetic f(R) gravity”, Int. J. Geom. Methods Mod. Phys. 16, 1950042 (2019) DOI: 10.1142/S0219887819500428.
[17] K. Nozari and N. Rashidi, “Mimetic DBI Inflation in Confrontation with Planck2018 data”, Astrophys. J. 882, 68 (2019) DOI: 10.3847/1538-4357/ab3295.
[18] N. Rashidi and K. Nozari, “Viable intermediate inflation in the mimetic DBI model”, Eur. Phys. J. C 81, 834 (2021) DOI: 10.1140/epjc/s10052-021-09648-x.
[19] A. V. Astashenok, S. D. Odintsov and V. K. Oikonomou, “Modified Gauss-Bonnet gravity with the Lagrange multiplier constraint as mimetic theory”, Class. Quantum Gravity 32, 185007 (2015) DOI: 10.1088/0264-9381/32/18/185007.
[20] S. Nojiri, S. D. Odintsov and V. K. Oikonomou, “Viable mimetic completion of unified inflation-dark energy evolution in modified gravity”, Phys. Rev. D 94, 104050 (2016) DOI: 10.1103/PhysRevD.94.104050.
[21] M. A. Gorji, A. Allahyari, M. Khodadi and H. Firouzjahi, “Mimetic black holes”, Phys. Rev. D 101, 124060 (2020) DOI: 10.1103/PhysRevD.101.124060.
[22] S. Nojiri and G. G. L. Nashed, “Consistency between black hole and mimetic gravity- Case of (2+1)-dimensional gravity”, Phys. Lett. B 830, 137140 (2022) DOI: 10.1016/j.physletb.2022.137140.
[23] K. S. Stelle, “Renormalization of higher-derivative quantum gravity”, Phys. Rev. D 16, 953 (1977) DOI: 10.1103/PhysRevD.16.953.
[24] M. Tang and Z. Xu, “The no-hair theorem and black hole shadows”, J. High Energy Phys. 2022, 12 (2022) DOI: 10.1007/JHEP03(2022)012.
[25] H. Luckock and I. Moss, “Black holes have skyrmion hair”, Phys. Lett. B 176, 341 (1986) DOI: 10.1016/0370-2693(86)90172-1.
[26] M. S. Volkov and D. V. Galtsov, “Non-Abelian Einstein Yang-Mills black holes”, JETP Lett. 50, 346 (1989).
[27] J. D. Bekenstein, “Black holes with scalar charge”, Ann. Phys. (N. Y). 91, 75 (1975) DOI: 10.1016/0003-4916(75)90112-0.
[28] J. D. Bekenstein, “Novel ’no-scalar-hair’ theorem for black holes”, Phys. Rev. D 51, R6608 (1995) DOI: 10.1103/PhysRevD.51.R6608.
[29] P. Kanti, N. E. Mavromatos, J. Rizos, K. Tamvakis and E. Winstanley, “Dilatonic black holes in higher curvature string gravity”, Phys. Rev. D 54, 5049 (1996) DOI: 10.1103/PhysRevD.54.5049.
[30] R. R. Metsaev and A. A. Tseytlin, “Order alpha-prime (two-loop) equivalence of the string equations of motion and the Sigma Model Weyl invariance conditions: Dependence on the dilaton and the antisymmetric tensor”, Nucl. Phys. B 293, 385 (1987) DOI: 10.1016/0550-3213(87)90077-2.
[31] G. W. Horndeski, “Second-order scalar-tensor field equations in a four-dimensional space”, Int. J. Theor. Phys. 10, 363 (1974) DOI: 10.1007/BF01807638.
[32] A. Nicolis, R. Rattazzi and E. Trincherini, “Galileon as a local modification of gravity”, Phys. Rev. D 79, 064036 (2009) DOI: 10.1103/PhysRevD.79.064036.
[33] L. Hui and A. Nicolis, “No-Hair Theorem for the Galileon”, Phys. Rev. Lett. 110, 241104 (2013) DOI: 10.1103/PhysRevLett.110.241104.
[34] T. P. Sotiriou and V. Faraoni, “Black Holes in Scalar-Tensor Gravity”, Phys. Rev. Lett. 108, 081103 (2012) DOI: 10.1103/PhysRevLett.108.081103.
[35] T. P. Sotiriou and S.-Y. Zhou, “Black Hole Hair in Generalized Scalar-Tensor Gravity”, Phys. Rev. Lett. 112, 251102 (2014) DOI: 10.1103/PhysRevLett.112.251102.
[36] E. Babichev and C. Charmousis, “Dressing a black hole with a time-dependent Galileon”, J. High Energy Phys. 2014, 106 (2014) DOI: 10.1007/JHEP08(2014)106.
[37] D. D. Doneva and S. S. Yazadjiev, “New Gauss-Bonnet Black Holes with CurvatureInduced Scalarization in Extended Scalar-Tensor Theories”, Phys. Rev. Lett. 120, 131103 (2018) DOI: 10.1103/PhysRevLett.120.131103.
[38] C. A. R. Herdeiro and E. Radu, “Asymptotically flat black holes with scalar hair: a review”, [arXiv:1504.08209 [gr-qc]].
[39] P. A. González, E. Papantonopoulos, J. Saavedra and Y. Vásquez, “Extremal hairy black holes”, J. High Energy Phys. 2014, 1 (2014) DOI: 10.1007/JHEP12(2014)001.
 [40] S. R. Dolan, S. Ponglertsakul and E. Winstanley, “Stability of black holes in Einsteincharged scalar field theory in a cavity”, Phys. Rev. D 92, 124047 (2015) DOI: 10.1103/PhysRevD.92.124047.
[41] D. Lovelock, “The Einstein tensor and its generalizations”, J. Math. Phys. 12, 498 (1971) DOI: 10.1063/1.1665613.
[42] C. A. Lanczos, “Remarkable Property of the Riemann-Christoffel Tensor in Four Dimensions”, Ann. Math. 39, 842 (1938) DOI: 10.2307/1968467.
[43] D. G. Boulware and S. Deser, “String-Generated Gravity Models”, Phys. Rev. Lett. 55, 2656 (1985) DOI: 10.1103/PhysRevLett.55.2656.
[44] R. C. Myers and J. Z. Simon, “Black-hole thermodynamics in Lovelock gravity”, Phys. Rev. D 38, 2434 (1988) DOI: 10.1103/PhysRevD.38.2434.
[45] Y. M. Cho and I. P. Neupane, “Anti-de Sitter black holes, thermal phase transition, and holography in higher curvature gravity”, Phys. Rev. D 66, 024044 (2002) DOI: 10.1103/PhysRevD.66.024044.
[46] C. Sahabandu, P. Suranyi, C. Vaz and L. C. R. Wijewardhana, “Thermodynamics of static black objects in D dimensional Einstein-Gauss-Bonnet gravity with D-4 compact dimensions”, Phys. Rev. D 73, 044009 (2006) DOI: 10.1103/PhysRevD.73.044009.
[47] A. Kumar, D. V. Singh and S. G. Ghosh, “Hayward black holes in Einstein-GaussBonnet gravity”, Ann. Phys. 419, 168214 (2020) DOI: 10.1016/j.aop.2020.168214.
[48] S. G. Ghosh and S. D. Maharaj, “Cloud of strings for radiating black holes in Lovelock gravity”, Phys. Rev. D 89, 084027 (2014) DOI: 10.1103/PhysRevD.89.084027.
[49] S. Capozziello and G. G. L. Nashed, “Charged spherically symmetric black holes in scalar-tensor Gauss-Bonnet gravity”, Class. Quantum Gravity 40, 205023 (2023) DOI: 10.1088/1361-6382/acf2d0.
[50] A. Sheykhi, “Mimetic gravity in f(R)-dimensions”, J. High Energy Phys. 2021, 043 (2021) DOI: 10.1007/JHEP01(2021)043.
[51] L. Sebastiani, S. Vagnozzi and R. Myrzakulov, “Mimetic Gravity: A Review of Recent Developments and Applications to Cosmology and Astrophysics”, Adv. High Energy Phys. 2017, 3156915 (2017) DOI: 10.1155/2017/3156915.
[52] J. Kaplan and J. Wang, “An Effective Theory for Holographic RG Flows”, [arXiv:1406.4152 [hep-th]].
[53] N. Behr and A. Mukhopadhyay, “Holography as a highly effcient renormalization group flow. I. Rephrasing Gravity”, Phys. Rev. D 94, 026001 (2016) DOI: 10.1103/PhysRevD.94.026001.
[54] N. Behr and A. Mukhopadhyay, “Holography as a highly effcient renormalization group flow. II. An explicit construction”, Phys. Rev. D 94, 026002 (2016) DOI: 10.1103/PhysRevD.94.026002.
[55] H. Adami, M. M. Sheikh-Jabbari and V. Taghiloo, “Gravity Is Induced By Renormalization Group Flow”, [arXiv:2508.09633 [hep-th]].
[56] I. Papadimitriou, “Lectures on Holographic Renormalization”, in Theoretical Frontiers in Black Holes and Cosmology, Springer Proc. Phys. 176, 131 (2016) DOI: 10.1007/978- 3-319-31352-8_4.
[57] K. Skenderis, “Lecture Notes on Holographic Renormalization”, Class. Quantum Gravity 19, 5849 (2002) DOI: 10.1088/0264-9381/19/22/306.
[58] B.-B. Wei, Z.-F. Jiang and R.-B. Liu, “Thermodynamic holography”, Sci. Rep. 5, 15077 (2015) DOI: 10.1038/srep15077.
[59] K. L. Panigrahi and B. Singh, “Holographic Extended Thermodynamics of deformed AdS-Schwarzschild black hole”, [arXiv:2508.14873 [hep-th]].
[60] M. Zhang et al., “Finite-cutoff Holographic Thermodynamics”, [arXiv:2507.01010 [hepth]].
[61] B. Pourhassan et al., “Holographic Thermodynamics of an Enhanced Charged AdS Black Hole in String Theory’s Playground”, J. Hologr. Appl. Phys. 4, 15 (2024).
[62] B. Pourhassan and S. Upadhyay, Thermodynamics of Quantum Black Holes: Holography, Damghan University Press, 2024.
[63] A. Bakopoulos, G. Antoniou and P. Kanti, “Novel black-hole solutions in Einsteinscalar-Gauss-Bonnet theories with a cosmological constant”, Phys. Rev. D 99, 064003 (2019).
[64] G. Nashed, “Charged and Non-Charged Black Hole Solutions in Mimetic Gravitational Theory”, Symmetry 10, 559 (2018).
[65] C. Tsallis and L. J. L. Cirto, “Black hole thermodynamical entropy”, Eur. Phys. J. C 73, 2487 (2013).
[66] F. Bajardi, K. F. Dialektopoulos and S. Capozziello, “Higher Dimensional Static and Spherically Symmetric Solutions in Extended Gauss–Bonnet Gravity”, Symmetry 12, 372 (2020).
[67] G. Antoniou, A. Bakopoulos and P. Kanti, “Black-Hole Solutions with Scalar Hair in Einstein-Scalar-Gauss-Bonnet Theories”, Phys. Rev. D 97, 084037 (2018).
[68] A. Bakopoulos et al., “Black holes with primary scalar hair”, Phys. Rev. D 109, 024032 (2024).
[69] A. Sheykhi and S. Grunau, “Topological black holes in mimetic gravity”, Int. J. Mod. Phys. A 36, 2150186 (2021).
[70] G. G. L. Nashed and S. Nojiri, “Black holes with Lagrange multiplier and potential in mimetic-like gravitational theory: multi-horizon black holes”, J. Cosmol. Astropart. Phys. 2022, 011 (2022).
[71] A. H. Rezaei and K. Nozari, “Joule–Thomson expansion in a mimetic black hole”, Sci. Rep. 14, 19475 (2024).
[72] M. Cvetič and S. Nojiri, “Black hole thermodynamics and negative entropy in de Sitter and anti-de Sitter Einstein-Gauss-Bonnet gravity”, Nucl. Phys. B 628, 295 (2002).
[73] D. V. Singh, V. Bhardwaj and S. Upadhyay, “Thermodynamic properties, thermal image and phase transition of Einstein-Gauss-Bonnet black hole coupled with nonlinear electrodynamics”, Eur. Phys. J. Plus 137, 126 (2022).
[74] G. W. Gibbons and R. E. Kallosh, “Topology, entropy, and Witten index of dilaton black holes”, Phys. Rev. D 51, 2839 (1995).
[75] S. W. Hawking and D. N. Page, “Thermodynamics of black holes in anti-de Sitter space”, Commun. Math. Phys. 87, 577 (1983).
[76] J. W. York, “Black hole in thermal equilibrium with a scalar field: The back-reaction”, Phys. Rev. D 31, 775 (1985).
[77] A. Teimouri, “Entropy of non-local gravity”, [arXiv:1705.11164 [hep-th]].
[78] V. Iyer and R. M. Wald, “Some properties of the Noether charge and a proposal for dynamical black hole entropy”, Phys. Rev. D 50, 846 (1994).
[79] J. D. Brown and J. W. York, “The Microcanonical functional integral. 1. The Gravitational field”, Phys. Rev. D 47, 1420 (1993).
[80] M. Bañados, C. Teitelboim and J. Zanelli, “The Black Hole in Three Dimensional Space Time”, Phys. Rev. Lett. 69, 1849 (1992).
[81] L. Susskind and J. Uglum, “Black Hole Entropy in Canonical Quantum Gravity and Superstring Theory”, Phys. Rev. D 50, 2700 (1994).
[82] D. Garfinkle, S. B. Giddings and A. Strominger, “Entropy in Black Hole Pair Production”, Phys. Rev. D 49, 958 (1994).
[83] J. Diaz-Alonso and D. Rubiera-Garcia, “Thermodynamic analysis of black hole solutions in gravitating nonlinear electrodynamics”, Gen. Relativ. Gravit. 45, 1901 (2013). 
Volume 5, Issue 4
October 2025
Pages 27-49
  • Receive Date: 03 August 2025
  • Revise Date: 14 September 2025
  • Accept Date: 14 September 2025