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Abstract. In this paper, we try to extend the intriguing concept of mimetic black
holes to the realm of the Gauss-Bonnet Gravity. Mimetic black holes are a fascinating
theoretical construct that mimic the exterior gravitational field of known black holes
even without possessing an event horizon in some specific conditions. By incorporating
the Gauss-Bonnet theory, we aim to investigate how the dynamics and properties of
mimetic black holes are altered in this modified gravitational framework. In this partic-
ular setting, we explore the existence of black hole solutions with nontrivial scalar hair
while being influenced by the mimetic scalar field in the Einstein-Scalar-Gauss-Bonnet
(ESGB) theory. These solutions are characterized by their regularity and offer new
insights into the dynamics of black holes in this theory. We proceed by conducting
an analytical study in the near horizon asymptotic regime when an event horizon cab
be existed. Our analysis reveals that in this setup a black hole event horizon with
a nontrivial hair can be formed, regardless of the sign of the Lagrange multipliers A,
depending on the particular selection of the coupling between the scalar field and the
Gauss-Bonnet term. Notably, this black hole horizon remains regular, emphasizing the
robustness of the black hole solutions in this setup.
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1 Introduction

Modern cosmology faces a significant issue in understanding the nature of the Universe’s
dark contents, which account for ~ 95% of the total mass-energy budget. According to Ref.
[1-3], the dark side of the Universe is made up of two components: dark energy (~ 69%) and
dark matter (~ 26%) of the mass-energy content. The Universe’s expansion is positively
accelerated by the former’s antigravity property and negative pressure, whereas the latter
adds to gravity but not electromagnetic interaction. Dark matter is also required to explain
the observed motions of galaxies and clusters, as baryonic matter alone cannot generate
sufficient gravitation. Dark matter contributes significantly to the cosmic microwave back-
ground anisotropies, galaxy cluster velocity dispersion, large-scale structure distributions,
gravitational lensing, and X-ray measurements from galaxy clusters. It’s feasible to ap-
proach the situation differently. Some physicists think that dark matter is a manifestation
of a gravity theory beyond General Relativity, rather than a particle-based phenomenon.
Modified gravity theories have been proposed to explain gravitational lensing, flat rotation
curves of galaxies, and cluster dynamics through geometrical effects. Nearly a decade ago,
the Mimetic Theory of Gravity was proposed as an alternative explanation for the dark mat-
ter puzzle [4]. The mimetic field can add an extra degree of freedom to the gravitational field.
The gravitational field has both transverse and longitudinal degrees of freedom, potentially
mimicking dark matter. A modified form of mimetic gravity has been shown to resolve both
cosmological singularities [5] and black hole singularities [6]. The mimetic theory predicts
that gravitational waves (GW) propagate at the speed of light, which is consistent with the
results of the event GW170817 and its optical counterpart [7,8]. This theory can explain
spiral galaxies’ flat rotation curves [9] and dark energy problem [10]. In recent years the
issue of black hole physics and thermodynamics has attracted even much more attentions,
see for instance [11] and references therein. In this respect looking at black holes physics
from the lens of mimetic gravity is interesting. The research on mimetic gravity were also
generalized to f(R) gravity [12,13], braneworld gravity [14-18] and Gauss-Bonnet gravity
[19,20] towards a unified description from the early cosmological inflation to the late-time
cosmic speed up under mimetic scenario.

In mimetic gravity theory, the conformal degree of freedom of the gravitational field can
be separated by introducing a new relationship as (see Ref. [4])

o = :F(gl“jaﬂd)augb)gaﬂ ’ (11)

where ¢,p is the physical metric, o is the auxiliary metric and ¢ is the scalar field [7,8]. The
first attempt to find a satisfactory black hole solution in mimetic gravity was conducted by
Gorji et al. [21]. In a previous research [10], it has been shown that the mimetic constraint is
inconsistent with the black hole geometry that includes horizons. To remove this discrepancy,
the constraint (1.1) is adjusted by integrating the function w(¢) or the auxiliary field X as
a Lagrange multiplier or by both of them in the following approaches [22]

w(9)g* 0addpd = 1, (1.2)
ANg"" 0u0,¢ £ 1) = 0, (1.3)
Mw(9)g"? 90,0054 + 1) = 0. (1.4)

This leads to the solutions for static mimetic black holes, time-dependent mimetic black
holes, and black holes in an expanding universe. Sometimes, they are presented as solutions
both inside and outside the black hole. On the other hand, the scientific literature is still
full of interest in generalized gravitational theories because the ultimate theory of quantum
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gravity, which would enable the unification of gravitational interactions with other forces
and robustly describe them at high energies, is still elusive. These theories provide the
framework within which several solutions of the traditional General Relativity (GR) have
been re-examined. They include extra fields or higher-curvature terms in their action [23].

Accordingly, scalar field based generalized gravitational theories were among the first to
be investigated. The search for new black-hole solutions, which went beyond the three widely
recognized families of general relativity, was abruptly put on hold when the no-hair theorem
[24] was developed. This theorem prohibited the possibility of a static solution of this type
that had a non-trivial scalar field related to it. However, counter-examples such as black holes
with Skyrme fields [25], Yang-Mills [26], or a conformal coupling to gravity [27] emerged in
the years that followed. In 1995, a new formulation of the no-hair theorem was put out [28];
however, this was also circumvented a year later when dilatonic black holes were discovered
in relation to the Einstein-Dilaton-Gauss-Bonnet theory [29]. The second wave of black-hole
solutions was obtained within the framework of superstring theory-inspired theories [30].
However, the revived development of the Horndeski [31] and Galileon [32] ideas within the
past ten years has greatly expanded the building of generalized gravitational theories. As
a result, new formulations of the no-hair theorems covering the scenarios of Galileon fields
[33] and standard scalar-tensor theories [34] were proposed. Nevertheless, in Ref. [4] these
more modern forms were also avoided, and in Ref. [35] some concrete black-hole solutions
were obtained. More recently, it was almost simultaneously shown by three different groups
[36] that innovative black-hole solutions with a non-trivial scalar hair may be admitted a
generalized gravitational theory containing a scalar field and the quadratic Gauss-Bonnet
(GB) term.

It was demonstrated in a general theoretical argument in Ref. [37] that the GB term’s
presence is crucial for avoiding the innovative no-hair theorem. Furthermore, the exact form
of the coupling function f(¢) between the GB term and the scalar field has no effect on the
emergence of the solutions: an asymptotic solution describing a regular black-hole horizon
with a non-trivial scalar field could always be constructed as long as the first derivative of the
scalar, ¢!, at the horizon obeys a particular constraint. Thus, a variety of coupling functions
f(¢) forms were employed to determine a large number of asymptotically flat black hole
solutions with scalar hair [35]. Additional studies presenting novel black holes or compact
objects solutions in generalized gravitational theories have reported [38,39], as well as further
studies of the properties of these novel solutions [40]. In this streamline of research, here
we aim to explore at least some uncovered features of the concept of mimetic black holes in
the framework of the Scalar-Einstein-Gauss-Bonnet gravity. The reasons for adopting such
a relatively complicated framework is the fact that understanding the low-energy limit of
string theory has been the subject of a notable number of attempts in higher dimensions
gravity in the last few decades. An extremely significant higher dimensional generalization
of Einstein’s gravity is the Einstein—Gauss Bonnet gravity which David Lovelock [41] later
rediscovered after Lanczos [42] made the suggestion. The Study of the Einstein-Gauss-
Bonnet (EGB) theory becomes crucial because it offers a more comprehensive understanding
of the setup to investigate numerous conceptual problems pertaining to gravity. This theory
is devoid of all ghost and the Einstein-Gauss-Bonnet theory’s field equations’ order are
not higher than two. Boulware and Deser were the first to obtain the exact black hole
solution in the Finstein Gauss-Bonnet gravity, despite numerous attempts to do so since
their inception [43]. Subsequently, several researchers have examined numerous precise black
hole solutions together with their thermodynamical characteristics [44-46]. There have also
been investigations into a number of black hole solutions with matter sources that generalize
the Boulware—Desser solution [47,48]. In this work we investigate the effects on the dynamics
and properties of mimetic black holes [21] in EGB gravity. This investigation will contribute
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a small step toward our comprehension of the interplay between gravity and the fundamental
laws of nature, potentially unraveling fresh insights into the essence of black holes and the
structure of space-time itself in a mimetic viewpoint.

The primary objective of our study is to derive the metric of a mimetic black hole em-
bedded in the Einstein-Gauss-Bonnet theory and subsequently try to compute its event
horizon radii following the strategy adopted in [19,49] but in a mimetic framework. It is
worth mentioning that the constructed setup has some connection with holography and
AdS/CFT correspondence. Mimetic field follows essentially the gauge/gravity duality and
it is natural to expect some traces of holography via AdS/CFT correspondence in this con-
text, especially when one deals with black holes as prominent candidate for manifestation
of the holography idea. The results of this study, focused on the asymptotically flat black
holes, provide the groundwork for several intriguing possibilities within the context of the
AdS/CFT correspondence. While speculative, the extensions and interpretations outlined
below highlight the potential relevance of the mimetic-Gauss-Bonnet gravity to holography.
1-Holographic Dual of Mimetic Hair: The primary feature of our solutions is the nontrivial,
regular scalar hair supported by the combined effects of the mimetic constraint and the
Gauss-Bonnet coupling. In a hypothetical asymptotically AdS extension of this model, this
scalar hair would be dual to a scalar operator O in the boundary conformal field theory
(CFT). The mimetic constraint, which is inherently geometric, would likely impose a novel
relation between this operator and the stress-energy tensor 7), of the boundary theory.
Studying the properties of this operator- its scaling dimension, correlation functions, and its
backreaction on the thermal state- could reveal new strongly coupled quantum phenomena
[50,51]. 2-Mimetic Gravity as an Effective Theory for Holographic Renormalization Group
(RG) Flows: The mimetic field can be interpreted as a preferred spacetime foliation. In
holography, the radial direction in AdS corresponds to the energy scale of the dual field
theory via the renormalization group (RG) flow. A natural extension would be to study our
system in an AdS background, where the mimetic scalar ¢ could define a specific holographic
slicing. This might provide a gravitational description of RG flows with a built-in “refer-
ence scale”, potentially offering new insights into the dynamics of confinement, deformation,
or the emergence of geometry from entanglement [52-55]. 3-Regularization of Holographic
Singularities: Our analysis showed that the inclusion of the Gauss-Bonnet term resolves the
caustic singularity present in pure mimetic black hole solutions, leaving only the central
curvature singularity. In holography, singularities in the bulk often signal limitations in the
effective field theory description of the boundary. Investigating whether this mechanism
can be extended to soften other types of singularities in AdS- for example, those inside
holographic superconductors or during thermal quenches- could be valuable. A mimetic-
Gauss-Bonnet model in AdS might provide a framework for constructing holographic duals
with improved UV behavior [56,57]. 4-Holographic Thermodynamics and Phase Structure:
The modified entropy formula we derived, that is, S, = Ap/4 + 4w f(¢), directly impacts
the black hole thermodynamics. In an AdS setting, black holes undergo rich phase tran-
sitions (e.g., Hawking-Page transitions). The mimetic field, influencing the entropy and
temperature, could significantly alter this phase diagram. Studying the phase structure
of mimetic-Gauss-Bonnet black holes in AdS would be a direct and fascinating application,
with the boundary interpretation being a transition between confined and deconfined phases
in a dual field theory with unusual thermodynamic properties [58-62].

With these preliminaries, the present manuscript is organized as follows: In the next
section we utilize the gravitational field equations and the equation for the mimetic scalar
field. Thus, by exploring the possibility of an asymptotic solution within the field equations
outlined in the references, we develop approaches to mimetic black hole solutions following
the seminal work [63]. These solutions provide a detailed description of a regular black
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hole horizon [64,65]. Specifically, our goal is to ascertain whether the field equations per-
mit an asymptotic solution that exhibits a well-behaved black hole horizon. In this EGB
mimetic theory, we additionally explore how the shape of the asymptotic solution of the
field equations far away from the event horizon of a black hole is influenced by the sign of
the mimetic factor A\. By examining the dependence on the mimetic coefficient A and the
coupling function f(¢), we seek to gain insights into the behavior attributed to mimetic
black hole solutions in this setup.

2 Theoretical Framework

In this paper, we delve into a broad category of gravitational theories which include ad-
ditional higher curvature terms alongside a mimetic scalar field. The action functional for
these theories is defined as follows (with 87G =1 = ¢):

s:= [ty [fj T FO) R + Mg 0,00,0 F 1)) | (2.1)

where

R%B = R,uupaRNVpo - 4R#VRNV + R2 s (22)

is commonly referred to as the Gauss—Bonnet term [66]. R represents the Ricci scalar, f(¢)
represents a universal coupling function. The mimetic field plays a vital role in enhancing
the field equations X is the auxiliary field (Lagrange multiplier) that enforces the mimetic
constraint equation [4,22]:

9" 0,00, = +1. (2.3)

In relation to the sign F of the action in (2.1), we should mention that depending on the
nature of the system, since the interior of the black hole is not static and depends on time,
the negative sign (—) must be used in the mimetic transformation. This means that the
derivative vector of the scalar field is a time-like vector. In the case of static solutions,
such as the space outside the black hole, the positive sign (+) should be considered. In this
case, the derivative vector of the scalar field becomes space-like. These are two possible
solutions; however the S, solution is consistent with the static and the S_ solution leads to
an imaginary scalar field, which is not physically meaningful in this context [21].

In our analysis, we consider a static and spherically-symmetric mimetic scalar field. The
coupling function f(¢) will be kept undetermined in the initial steps of our examination.
However, at the stage of deriving specific solutions numerically, a particular form for f(¢)
will be chosen, with respect to the metric tensor g and the scalar field ¢.

As emphasized in earlier works, the coupling function f(¢) plays a central role in enabling
scalar-tensor interactions, particularly in scenarios that give rise to black-hole solutions with
non-trivial scalar hair [67,68]. Previous research has demonstrated that the inclusion of the
Gauss-Bonnet (GB) term plays a main role in evading the novel no-hair theorem. Based
on this, a broad class of asymptotically flat black-hole solutions with non-trivial scalar hair
have been obtained for a wide variety of coupling functions f(¢). The coupling function
f () serves as a crucial link between the scalar field ¢ and the GB term in the gravitational
action. It acts as an intermediary that enables the scalar field to interact with the curvature
of space-time. Remarkably, the existence of these hairy black-hole solutions does not depend
sensitively on the specific form of f(¢) rather, it is the mere presence of such a coupling
that allows scalar hair to be sustained [67,68].

By varying the action (2.1) with respect to the metric tensor g,, and the scalar field ¢,
both the gravitational field equations and the equation for the mimetic scalar field can be
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derived as follows: (with 87G =1 = ¢)

G =T, (2.4)
F(®)R%p —2V,(A(9"9)) =0, (2.5)
where G, is the Einstein tensor and 7},, is the energy-momentum tensor, written as follows
Ti) = —2X(8,00,9) + 9w A(0,00°0 F 1), (2.6)
T;Szz/) = - (gpugku + g)\ugpu) nﬂAaﬁRZ’;}v"/aﬁf((b) ) (27)

with
T =T + T2 . (2.8)

In the above equations, a dot over the coupling function denotes its derivative with respect
to the scalar field (i.e. f = %). We have also used the definition:

ePIoT

ﬁRUT(Xﬁ .
In this study, we investigate the emergence of regular, static, spherically symmetric black
hole solutions and characteristics of a non-trivial mimetic scalar field. Accordingly, the line-
element describing the regular, static, asymptotically flat black hole will be expressed as
follows:

Ry = 1" Rorap = (2.9)

ds® = —e*dt? + P dr? 417 (d6? + sin’ 0de?) (2.10)

By utilizing this line-element, it is straightforward to determine the non-vanishing compo-
nents of the Einstein tensor G, as:

~B(r)
Gt = (6 g ) (—B’r—eB<’”> + 1) , (2.11)
T eiB(T) T
Gr = < = > (A'r — B 4 1) , (2.12)
0 _ eiB(T) 12 " / _ AN /
Go = (A%r+2A4"r+ A'(2-rB') —2B') , (2.13)
GY = e 2 (A%r — A'rB' +2A"r + 24" — 2B') (2.14)
o 4r ’ ’

In the mimetic gravity framework, Einstein’s theory of gravity is reformulated in a way
that isolates the conformal degree of freedom in a covariant manner. This is achieved by
introducing a physical metric that is defined in terms of an auxiliary metric and a scalar field,
which appears through its first derivatives [69,70]. The conformal transformation relating
the physical metric g, to the auxiliary metric §,, and the scalar field ¢ is given by:

Guw = (5P 0a030) Gy - (2.15)

Also, the variation of the action functional with respect to the auxiliary field A yields the
following relationship [64]:
0S5+

ZPE 2% —
S =0 9" 0,00,0 = £1. (2.16)
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Constraint (2.16) may take the form of a second-order polynomial which can be solved to
find e®. The 7r component of Einstein’s equations yields:

eB = ¢, (2.17)

so that,

1

B' = 23 . (2.18)
We are interested in asymptotic flat solutions, so as  — oo we have e — 1 and ef — 1
(see Figure 1). Nevertheless, it becomes evident that the inclusion of the mimetic constraint
significantly influences not only the asymptotic solutions but also the characteristics and
even the existence of the resulting black holes solution. In our examination, we utilize a
prime symbol to denote differentiation with respect to the variable r. Based on the obtained
relations for the metric functions, we can rewrite the energy-momentum tensor as follows:

r2\(r) —Af 4f  8f¢"
Ttt = r2 - )‘(T) + T2¢)/2 o ,r2¢/4 ’ (219)
. 2f A" 6fA
T! = —2X(r) — 5yt g (2.20)
a’nd . . . .
! 12 " 1/ /
szngzfA AfA2 +8fA"  Af¢"A (2.21)

T¢/2 47"¢/3 7"(]5’4

The Einstein tensor is rewritten to match the above relations [41]. By identifying the
components of G, and T},,,, we can determine the specific form of Einstein’s field equations.
These equations are also supported by the scalar-field equation (2.5), which can be explicitly
expressed as follows:

Al (A’—ﬁ"’—,,/)
(e () .
(z)/g 4 4Allf + 27’2¢//)\(T) + 2A//2f (2.22)

" (rQA(r)qu' _Y ‘b”) a0 (<208 v ane)) =0,

¢ ¢

By utilizing the line-element (2.10), Einstein’s equations can be explicitly formulated as
follows:

_¢/3 _2¢//,’,+¢/ _ _f¢/4+4f:¢/2 _8f'¢//

r2¢/3 r2¢/4 ) (223)
-1 Ar+1 2f A (¢ — 3)
7«7 o 7,.2¢/2 =—2X— 7‘2¢/3 ) (224)
and
(—2A'r — 4)¢" + ¢’ (A"%r + 2A"r +2A4") 1

drg¢’3 - r¢' [AQny +2A'9%f —4A'¢" [ 129" fA] .
(2.25)

After deriving the main equations of the setup, we pay attention to the solutions of these
equations. Since these are very complicated equations, analytical, closed-form solutions are
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not available and we have to follow some simplifications, asymptotic solutions and numerical
analysis.

At this stage some discussion about existence of the horizons in this setup is worth men-
tioning.
As has been shown in original work on mimetic black holes by Gorji et al., (Ref. [21]),
obtaining an analytical (event) horizon radius for a static black hole solution in the pure
mimetic gravity scenario is not an easy task. This is because unlike in cosmological setups
where one uses only a timelike vector, here in mimetic scenario one needs both timelike and
spacelike vectors constructed via the derivatives of the mimetic field to fix the location of the
horizon(s). Nevertheless, as has been discussed in Ref. [21], in some special circumstances
there are horizons of the types apparent, Killing or event horizon. In fact, in the setup of Ref.
[21], one does not obtain a true event horizon as in the Schwarzschild case. If the mimetic
field is switched off in the background (that is, A = 0 in Ref. [21]), one simply recovers the
Schwarzschild solution, and the usual event horizon at r = 2m is present. However, once
the mimetic scalar contributes (A # 0), the static solution loses the horizon completely and
results in naked singularities. To rescue something resembling a black hole, the authors in
Ref. [21] glue an exterior solution to an interior one, and the surface at » = 2m behaves
only as an apparent horizon- not a true event horizon.
In our more involved setup due to the presence of GB effect, it is possible essentially to find
event horizon with the same technique. However, due to the complication of constructed
model, no analytical solution for the horizon radius is possible. So, we restricted ourselves
to a numerical study of the issue in present context. In fact, in this manuscript we study
black holes within mimetic EGB gravity theory, which is more involved in comparison with
the genuine mimetic black hole studied in Ref. [21] and our solutions explicitly are capable
to realize event horizon. So, the solutions we present and analyze are capable to admit
a regular event horizon. Our entire asymptotic analysis in the next Section is predicated
on the existence of a horizon at some radius r = r,, where eA(") — 0 and (") — 0.
The analytical and numerical results confirm that such a structure can consistently emerge
from the field equations in this theory. In summary, in our Mimetic Einstein-Scalar-Gauss-
Bonnet (ESGB) setup it is possible to obtain solutions with a genuine event horizon, but
we should stress that it is not guaranteed automatically. Whether the horizon is an ac-
tual event horizon (a global causal boundary) or only an apparent/coordinate/caustic-type
horizon depends on the details of coupling function, f(¢), the boundary/regularity condi-
tions at the would-be horizon, and the global extension of the solution. In what follows
we elaborate this last statement. The Gauss-Bonnet coupling in our Mimetic EGB setup,
f(¢), frequently enables scalar-hairy black holes in ESGB models (this is a well-known is-
sue); the higher-curvature term allows nontrivial scalar profiles while still admitting regular
metric horizons. Thus, adding a mimetic scalar on top of the ESGB does not a priori for-
bid the existence of the event horizons - in fact, the GB coupling often helps form hairy
solutions with a regular horizon. We constructed the near-horizon asymptotic conditions by
demanding the conditions e*(") — 0 and e?(") — oo and bounded ¢ as r — r;,. We then
derive algebraic/ODE relations (the expressions for A”; ¢, the discriminant C' > 0, and for
A(r)). These relations demonstrate that there exist parameter regions and choices where the
near-horizon expansions are self-consistent, i.e., a regular horizon is permitted by the field
equations. The imposed conditions (metric component behavior and bounded scalar field)
are local near r,. A local regular horizon can correspond to an event horizon, but proving
it is indeed a global event horizon requires causal analysis of the full solution (extension
across the horizon, null geodesic completeness and escape to infinity, and the absence of
future-directed causal curves from inside to outside). We emphasize that our asymptotic
analysis is therefore a necessary step, but not a complete proof of the existence of a global
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event horizon.

2.1 Asymptotic Solutions at the Black Hole Horizon

In our quest to derive novel black-hole solutions, we will first examine whether the field
equations allow for an asymptotic solution that describes a regular black-hole horizon. With
the discussions at end of the previous part, rather than making the typical power-series
assumption with respect to r — r,, where r, represents the horizon radius, we develop
the solution using the same method as has been adopted in earlier research such as the
Ref. [63,68]. Specifically, we demand that, as we approach the horizon, the metric function
4 should approach zero while e” approaches infinity, and the scalar field must stay bounded.
To satisfy these conditions, we assume that A’ diverges as r — 75, a point we will justify
subsequently, while ¢’ and ¢ remain finite in the same limit.
We can formulate a set of two separate, second-order coupled differential equations for
the corresponding functions A” and ¢” in the following manner

120N — ¢+ 1) ¢ (A2 + 26N (1)r? + 462\ (1) — 26/6")

A'(r)y =— - . - -
2/ +¢'r — 6 20+ ¢'r — 6
1 / 2y,.2 12 ¢ 13 SV 1 / v
+ — - 207 % — 9" +1)(2 +4 +o'r+¢ —6 ,
Py GG C LA LA A )
(2.26)
o) = (324X2fr4 A + 18Afr3 A2 — 8F3 A" + 63/3CAr2 — 3061 fr2 A’ — 9frA’2 — 3/3C + 72fA")3
- 612X — 3

6Ar3 A’ — 4f2A2 4 6r2\ —3A'r — 3

(672X — 3)(F(324N2r4 A + 18Xr8A’2 — 82 A/3 — 306Ar2A’ — 9r A2 + T2A7) — 3v/3C + 6/3CAr2)3
2f A
6r2X — 3"’

(2.27)
where by definition

C =972XN7 f2r* A + 108Af2r3 A + 2ArP A" — 484 A" — f2r2 A" — 86477 A + 6t A"
—56f2rA® —r3AB £ 63 A + 188247 — 3r2 A% + 272N —3Ar — 1.

(2.28)

The quantity C' within the square root symbolizes an exact combination and must always

be positive or zero for the expression to have a real solution, that is, C' > 0.
The positivity of the expression C' indicates that

1
B(r) =T + KA’2> ( — /(672X + A'r — 2)(54r2) + A'r — 26)3
(2.29)
— 72 A" 4+ (10873 X — 561) A’ + 9720%r* — 86412\ + 188)] :

where T is a negative constant. From the analytical solutions of equation (2.24), the value
of A is determined as follows:

/ (202 A(r)r? — ¢ + 1)
2f¢2 + ¢/r — 6f

Here (1 is another integration constant. Due to the high complexity of the field equations,
we cannot provide an exact analytical and explicit solution to this equation. This relation

dr + 01 . (230)
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is exact and one of our main results which exclusively determines the behavior of the metric
function e” in the vicinity of the event horizon.

Equations that include the mimetic constraint and general coupling function facilitate
the formation of a black-hole solution with a regular horizon. The values of A are obtained
by solving the equation (2.24) as follow:

I !/ !
)= g —ar 1 A 34 (2.31)
A2 A2 ¢/2 7“2 ¢/ 7,2 ¢/3
The behavior of A as the mimetic coefficient at the different radial distances from the horizon
of the black hole will be shown in forthcoming arguments. We shall discuss and justify the
numerical results just after a look at the thermodynamic aspects of the mimetic black hole
solution in this EGB setup.

3 Thermodynamic Analysis

In this section, we delve into the thermodynamic properties of Mimetic-Einstein-Gauss-
Bonnet black hole, specifically focusing on parameters like temperature and entropy (see also
the Joule-Thomson expansion in a mimetic black hole [71]). The first quantity we introduce
is the temperature of the black hole, which is related to the surface gravity [70,71]. Using
this correlation, the temperature of the black hole can be calculated through its surface

gravity [72-74] as
Kh 1 1
w11 . (3.1)
2 4 < |gttg’r‘7”| )r:'fh

Based on the given metric function, the temperature function in our setup can be expressed
as follows

dgee
dr

- A,(T)GA(T)
A /¢/2(r)eA(r) ’

Note that A as the mimetic Lagrange multiplier shows itself via A(r). In fact, the above-
mentioned formula for spherically symmetric black holes is applicable in theories that include
higher-order corrections, like the Gauss-Bonnet term. The final expression in the black hole
temperature, equation (3.2), is obtained by substituting the values of the metric components
git and g, in the temperature formula (3.1). So the temperature of the black hole can be
expressed solely in terms of the mimetic coefficient A and the radial coordinate r, relying
on the specific characteristics of the Einstein-Gauss-Bonnet theory and the attributes of
the mimetic scenario. Once again, due to complexity of the relation for A(r), there is no
closed form analytical solution to the temperature. The entropy of the Mimetic-Einstein-
Gauss-Bonnet black hole can be calculated through the Euclidean approach, resulting in the
following equation [71,72,75]:

(3.2)

osr) |

op
Here, S represents the entropy, and F' represents the Helmholtz free energy of the system
which can be described within the framework of the Euclidean form of the action Ig, 8 =
1 _ I
The aforementioned equations are employed to calculate the asymptotic entropy of the
black hole. However, in non-asymptotic states, these equations require modifications [65,74].

S=5 (3.3)
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In this case, we may write

_ 2 -
— _or f{ d x\F aRade) Eabbod (3.4)

where L is the Lagrangian of the theory, £, the binormal to the horizon surface H, and ho
is the determinant of the 2-dimensional projected metric on H [71,72,75-77]. The similarity
between the Euclidean and Noether charge approaches has been proven in [78]. Various
methods have been employed to determine the entropy of stationary black holes. In this
context, we compare the Noether charge method (valid for any Lagrangian theory that
is invariant under diffeomorphisms) with various Euclidean techniques. Specifically, we
examine (7) the microcanonical ensemble method suggested by Brown and York [79], (i¢) the
closely associated method introduced by Banados, Teitelboim, and Zanelli, which expresses
black hole entropy in terms of the Hilbert action surface term [80], (#i7) an alternative formula
by Banados, Tetelboim, and Zanelli, also utilized by Susskind and Uglum, which treats black
hole entropy as linked to a conical deficit angle [81], and (iv) the approach of pair creation
proposed by Garfinkle, Giddings, and Strominger [82]. Each of these methods are limited
in their applicability when compared to the Noether charge method [83]. This is especially
the case in theories that include higher-order corrections such as the Gauss-Bonnet (GB)
term. However, it is important to emphasize that the Noether charge method is commonly
preferred for its efficiency in calculating black hole entropy [78]. Now, based on the variation
of the Lagrangian (3.4) with respect to to the Riemann tensor and aforementioned points,
we can express the entropy relationship as follows [53]:

— —7%d z h<2 { ac bd gbcgad) 4 f(¢) [2Rabcd + 2(gacRbd _gbcRad _ gadec +gbdRac)
+ R(gac bd __ bdRuc)] }‘Héabécd . (35)

The first term in the brackets of this expression comes from the modification of the Einstein-
Hilbert term. This expression can be computed to yield an optimal outcome as follows [67]

7{ d2 ) (Eapé® — 248" . (3.6)

We note that &, is anti-symmetric and furthermore, complies with &,,¢% =

achieve at the following well-known expression

= —2. Hence, we

A

This equation depicts the horizon surface as Ay = 4mr7, with the other components in
Equation (3.5) being directly related to the coupling function f(¢) and also affected by
changes in the Mimetic term. In order to proceed the computation, it is noted that the

binormal vector can be expressed on the horizon surface €., = —\/—googn|H(§26g - 5368).
This enables us to express the terms in a different form following Refs. [53]:

( oL (3.8)

0
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Hence, the terms that are directly related to f(¢) can be represented as follows:

1 2 0101 00 pl11 10 pO1 01 p10 11 00 00 11
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(3.9)
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and therefore,

Sy = M = 4 f(). (3.10)

Th
The obtained expression for the Mimetic-Einstein-Gauss-Bonnet (GB) black hole entropy
confirms that the entropy is directly influenced by the form of the coupling function and
the mimetic constraint. Nevertheless, the auxiliary field A(r) does influence various char-
acteristics of the black hole in a quantitative way, such as its entropy and temperature as
discussed in references [67,72-74]. Specially, we have

Sp = % +Arf(d). (3.11)

The last term is specifically a trace of the mimetic scalar field coupled to the GB term.

4 Numerical Solutions

To achieve the black hole solutions in Einstein-Gauss-Bonnet gravity with mimetic con-
straint, we calculated the scalar field ¢(r) and the metric components using the field equa-
tions, but we were not able to derive these parameters analytically in closed form due to
complexity of the relation for A(r). So, to proceed further, we resort to numerical methods
to check the behavior of the mimetic field and other important quantities such as A\(r). To
preform our numerical study, we chose some specific forms for the coupling function f(4(r)).

To acquire solutions for mimetic black holes in the context of the Einstein-Gauss-Bonnet
theory with the mimetic constraint, we derived the gravitational field equations and the
equation for the scalar field. Because of the complexity of our equations as we said, ob-
taining closed analytical expressions for the metric and the scalar field in terms of 7 is not
possible, leading to the use of numerical methods to investigate the field behavior. To better
understand the behavior of the metric and to compare different scenarios, we can consider
the following plots. Figure 1 illustrates the metric function’s behavior at various radial
coordinate from the event horizon (near the horizon and at asymptotic large distances)for
mimetic black holes following Ref. [21], Mimetic-Gauss-Bonnet black hole (our setup), and
the Schwarzschild black hole solution. We note that in our numerical analysis, we worked
in the units where the horizon radius is normalized to unity. Specifically, for the metric
function plotted in Figure 1, the horizon is located at r;, = 1 (in the adopted convention for
the fundamental constants).

As shown in Figure 1, the Mimetic-Einstein-Gauss-Bonnet black hole, which is based on
the Einstein-Gauss-Bonnet theory, exhibits a completely asymptotically flat behavior. It
is noticed that near the black hole horizon, the temporal metric function approaches zero
as usual, while the spatial metric component diverges and tends to infinity. Conversely,
at distances far from the event horizon, this behavior is reversed, with both temporal and
spatial metric components tending towards constant numerical values. By examining the
graph, it is clear that, at very large distances, the metric functions satisfy the condition that
eAl") = ¢B(") At the large distances, the spacetime structure becomes flat and Minkowskian
(without curvature). While in mimetic black hole, due to the influence of the mimetic
gravitational effects, the metric may exhibit more complex behavior near the event horizon
than what is predicted by the standard General Relativity. The Lagrange multiplier in
mimetic black holes behaves like a perfect fluid with negative pressure, similar to the dark
energy, and leads to significant spacetime curvature; see for instance Ref. [21]. For the
sake of comparison, the plots we generated using the analytical results of the pure mimetic
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Figure 1: Left: g, and Right: g¢;; the components of the metric as a function of radial
coordinate r. The red curve corresponds to the mimetic black hole (MBH), the blue curve
represents the Mimetic-Einstein-Gauss-Bonnet black hole (MEGBBH), and the green curve
shows the Schwarzschild black hole (SchB). We have set 7, = 1 in our adopted units.

case reported in Ref. [21] show that the time component of the metric increases near the
event horizon, while the spatial component approaches a constant value. This behavior is in
contrast to what is observed in the Schwarzschild black hole and the Mimetic Gauss-Bonnet
black hole diagrams. In contrast, when examining a mimetic black hole within the context of
the Gauss-Bonnet theory, we observe that the metric behaves asymptotically flat both near
the horizon and at large distances. As is well known, the Gauss-Bonnet coupling function,
which is related to gravitational corrections in spacetime, can modify the spacetime structure
in various regions. One feature of the Gauss-Bonnet correction is that these models generally
tend to exhibit flat behavior (asymptotic flatness) in the distant regions, as the additional
gravitational effects diminish at large distances, and space-time approaches a flat state. The
combination of mimetic effects and Gauss-Bonnet corrections can adjust and modify the
gravitational behavior at large distances. Typically, these two effects can interact in such
a way that the metric behaves asymptotically flat in the distant regions of the black hole.
This interaction may occur due to the reduced gravitational effects at large distances and the
dominance of mimetic and Gauss-Bonnet effects, leading to the metric ultimately becoming
asymptotically flat.
We also use the Schwarzschild black hole metric [80]:

-1

ds? = (1 - ¥>dt2 + (1 - %) dr® — 12 (d6° + sin®(0)d¢?) , (4.1)
and related quantities as a benchmark for analyzing and comparing the behavior of the
Mimetic-Einstein-Gauss-Bonnet black hole. In Figure 1, we have shown also the metric
behavior of the Schwarzschild black hole (SchB) from both time and space perspectives.
Near the event horizon, it is observed that the time component experiences a significant
contraction. In other words, for an external observer, time near the event horizon approaches
zero. The spatial component, representing spacetime curvature, increases sharply near the
event horizon. This indicates that spatial distances become so curved that; near the event
horizon space-time is stretched to infinity. At large distances from the black hole, the
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time component approaches unity, indicating the normal passage of time, and the spatial
component also approaches unity, signifying flat spacetime with no curvature.

Now, to study the behavior of the Lagrange multiplier A(r), we provide a short review
of some required preliminaries. As mentioned earlier, several modified gravity models have
recently been proposed to reproduce the gravitational effects of the dark matter. The vari-
ational principle in these models leads to more general equations of motion compared to
standard General Relativity, making it possible to describe effective dark matter. The true
nature of the dark matter is one of the main puzzles in modern cosmology, as it still avoids
direct detection and reveals itself only through its gravitational influence at galactic and
cosmological scales. Because of this, many researchers have tried to explain its observable
effects by changing/modifiying or extending General Relativity. Within the mimetic sce-
nario, in simpler versions of the mimetic dark matter model, the action is rewritten by
adding a Lagrange multiplier A(r), as follows [9]:

so= [y [§+A<g~”au¢a,,¢q:1> . (42)

As has been discussed in Introduction, taking the variation of the action with respect to
A(r) gives the constraint:
9" 0,90, = £1. (4.3)

This shows that the mimetic model is equivalent to standard General Relativity with a scalar
field that appears in the action only through this constraint. This simplified setup still keeps
the full structure of the original model. The field A(r) can also be treated as a dynamical
field with its own kinetic term and potential. If the scalar field ¢(r) satisfies ¢'(r) = 1,
then \(r) behaves like a3, which is the same scaling as the dark matter in an expanding
universe, see Ref. [81] for more details. In the study of mimetic black holes in Ref. [21], the
authors analyzed how A(r) changes with the radial coordinate r. They derived a differential
equation for A(r) from the modified Einstein equations, and then solved and plotted it for
the specific case with cp = 2 and r¢ = 4. The result shows two singularities: one at r» = 0,
which is a usual curvature singularity, and another at r = 7y, which comes from the structure
of the mimetic scalar field and is called a caustic singularity. The caustic-type singularity is
a distinctive feature of the mimetic gravity framework. The plot of A(r) for MBH shows a
branch cut at r = r¢, where A(r) changes sign in a discontinuous way, with lim A(r) = —oo
when r — r}' and lim A\(r) — +oo when r — 7. This indicates a sharp and asymmetric
singularity at that point. In comparison, in the Schwarzschild solution of General Relativity,
both the Ricci scalar and Ricci tensor are equal to zero. But in the mimetic gravity model,
these curvature quantities are not zero. So, it makes sense to use them directly to study
singularities, instead of focusing only on the Kretschmann scalar as one does in vacuum
solutions. In comparison, for A(r) in our Mimetic-Einstein-Gauss-Bonnet model which is
constructed by addition of the Gauss-Bonnet term to the pure Mimetic action, as shown in
Figure 2, the caustic structures have been removed and only the real singularity at r, = 1
remains in this generalized mimetic scenario.

We note that to analyze the numerical results, we must firstly solve field equations nu-
merically and then plot the corresponding graphs. As previously mentioned, field equations
include a coupling function, f(¢), for which we can consider various forms. As an example,
scalar field plots can be generated based on the assumed coupling functions as illustrated in
Figure 3. We studied multiple configurations for the function f(¢) and plotted the necessary
parameters with comparison in different contexts. While we could not find closed, analyt-
ical form of the metric at large distances from the black hole horizon for various coupling
functions f(¢), our numerical results ensure that its behavior is influenced by the shape of
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Figure 2:  A(r) in terms of the radial coordinate r. The blue curve corresponds to the
mimetic Einstein-Gauss-Bonnet black hole (MEGBBH), and the red curve represents the
mimetic black hole (MBH). We have set r;, = 1 in our adopted units.

the coupling function f(¢). Figure 3 shows the behavior of ¢(r) for three different coupling
functions f(¢). Divergent or nonlinear coupling functions such as f(¢) = alog(¢) (the red
curves) can lead to instabilities. In the case where the coupling function is assumed to be
logarithmic, the effect of the coupling term with the scalar field becomes significant pri-
marily in regions of strong gravitational fields (e.g., near the horizon). However, at large
distances where the space-time curvature decreases, the field no longer feels the influence
of the coupling term. In the absence of other dynamical sources, it tends to approach its
equilibrium value or zero. A sharp transition in the scalar field behavior is observed for
forms such as f(¢) = a¢® (the blue curve) or f(¢) = ae? (the green curve), where the
field asymptotically approaches a finite value. In these cases, the scalar field is remarkably
affected by the coupling function at the large distances, rising or falling further depending
on the initial sign of the field.

5 Conclusion

In this work we have extended the framework of the mimetic black holes to the case where the
Gauss-Bonnet effect is included. The theory is essentially a scalar-Einstein-Gauss-Bonnet
gravity where the scalar degree comes from mimetic scenario. We derived all the necessary
field equations along with attempt to solve them analytically. However, due to the com-
plexity of the theory, closed-form, analytical solutions are not available in this setup. For
instance, the analytical form of the metric function A(r) even in some restricting conditions,
can be achieved just in an integral form as Eq. (2.30) which has not closed-form solution.
So, we were forced to study the theory’s outcome numerically. The results with specific
choices of the coupling function f(¢) are shown in figures. Indeed, our detailed calculations
in the small r region have shown that the mimetic constraint around a typical black hole
creates unique conditions for the ¢ parameter. Also, a gravitational singularity arises re-
gardless of whether \(r) is positive or negative. Numerical analysis revealed that by adding
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-10

Figure 3: The scalar field ¢(r) in terms of the radial coordinate r. The red line corresponds
to f(¢) = alog ¢, the blue line corresponds to f(¢) = ag® and the green line corresponds

to f(¢) = ae?.

the Gauss-Bonnet term to the action of the mimetic black hole as in our setup, the behavior
of the metric function becomes asymptotically flat at large distances, and the structural sin-
gularities of the mimetic gravity are resolved. This is reasonable since Gauss-Bonnet effect
has its origin in string theory as an approach to quantum gravity proposal with high energy
(short distance) ultra-violet cutoff. However, these results were obtained only for a few spe-
cific forms of the coupling function, f(¢), which was assumed as a model parameter. In the
calculations, A\ was treated as a Lagrange multiplier that enters the Einstein equations and
the metric functions; thus indirectly influencing the properties of this class of black holes.
As an important result, we have shown that for A(r) in our Mimetic-Einstein-Gauss-Bonnet
model, as shown in Figure 2, the caustic structures have been removed and only the real
singularity at » = 1 remains in this generalized mimetic scenario. Detailed analysis has
shown that when examining significant distances, black hole solutions in the framework of
our field equations are well-defined, but the complex nature of the field equations makes
it analytically impossible to determine such solutions in closed forms. So, we were forced
to see the behavior of the solutions numerically. Examining the solutions at distances far
from the event horizon, we found that the metric components exhibited constant behavior
at infinite radial coordinate, while the Gauss-Bonnet constant term remained unchanged
throughout space-time. The existence of mimetic constraint in a Gauss-Bonnet black hole
with a scalar field can have an effect on various properties, such as entropy and temperature.
The influence of the mimetic constraint on thermodynamic relationships has been treated
via the metric components of the black hole solution, whereas the curvature of spacetime is
determined by the mimetic constraint that appeared in the parameters of the Gauss-Bonnet
black hole metric. To summarize, our study shows that various theoretical frameworks in-
corporating the Gauss-Bonnet term can produce novel black hole solutions, especially with
a mimetic constraint.
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