[1] T. Nishioka, S. Ryu and T. Takayanagi, “Holographic entanglement entropy: an overview”, J. Phys. A 42, 504008 (2009) DOI:10.1088/1751-8113/42/50/504008.
[2] P. Calabrese, F. H. L. Essler and G. Mussardo, “Introduction to ’Quantum Integrability in Out of Equilibrium Systems”, J. Stat. Mech. 064001 (2016) DOI:10.1088/1742- 5468/2016/06/064001.
[3] J. Eisert, M. Cramer and M. B. Plenio, “Colloquium: Area laws for the entanglement entropy”, Rev. Mod. Phys. 82, 277 (2010) DOI:10.1103/RevModPhys.82.277.
[4] M. Heller, F. Ori and A. Serantes, “Temporal Entanglement from Holographic Entanglement Entropy”, [arXiv:2507.17847] (2025).
[5] G. Vidal, “Class of quantum many-body states that can be effciently simulated”, Phys. Rev. Lett. 101, 110501 (2008) DOI:10.1103/PhysRevLett.101.110501.
[6] M. C. Bañuls et al., “Matrix product states for dynamical simulation of infinite chains”, Phys. Rev. Lett. 102, 240603 (2009) DOI:10.1103/PhysRevLett.102.240603.
[7] J. Haegeman et al., “Time-dependent variational principle for quantum lattices”, Phys. Rev. Lett. 107, 070601 (2011) DOI:10.1103/PhysRevLett.107.070601.
[8] M. A. Nielsen and I. L. Chuang, “Quantum Computation and Quantum Information”, Cambridge University Press (2000) DOI:10.1017/CBO9780511976667.
[9] B. Swingle, “Entanglement renormalization and holography”, Phys. Rev. D 86, 065007 (2012) DOI:10.1103/PhysRevD.86.065007.
[10] G. Evenbly and G. Vidal, “Tensor network renormalization yields the multiscale entanglement renormalization ansatz”, Phys. Rev. Lett. 115, 180405 (2015) DOI:10.1103/PhysRevLett.115.180405.
[11] S. Ryu and T. Takayanagi, “Holographic derivation of entanglement entropy from AdS/CFT”, Phys. Rev. Lett. 96, 181602 (2006) DOI:10.1103/PhysRevLett.96.181602.
[12] G. Guralnik and Z. Guralnik, “Complexified path integrals and the phases of quantum field theory”, Annals of Phys. 325, 2486 (2010) DOI:10.1016/j.aop.2010.05.004.
[13] I. Peschel, “Calculation of reduced density matrices from correlation functions”, J. Phys. A 36, L205 (2003) DOI:10.1088/0305-4470/36/14/101.
[14] G. Vidal, “Effcient classical simulation of slightly entangled quantum computations”, Phys. Rev. Lett. 91, 147902 (2003) DOI:10.1103/PhysRevLett.91.147902.
[15] R. Jefferson and R. C. Myers, “Circuit complexity in quantum field theory”, JHEP 10, 107 (2017) DOI:10.1007/JHEP10(2017)107.
[16] A. Nahum, J. Ruhman, S. Vijay and J. Haah, “Quantum entanglement growth under random unitary dynamics”, Phys. Rev. X 7, 031016 (2017) DOI:10.1103/PhysRevX.7.031016.
[17] A. Elben et al., “Rényi entropies from random quenches in atomic Hubbard and spin models”, Phys. Rev. Lett. 120, 050406 (2018) DOI:10.1103/PhysRevLett.120.050406.
[18] E. Witten, “Analytic Continuation Of Chern-Simons Theory”, AMS/IP Stud. Adv. Math. 50, 347 (2011) DOI:10.1090/amsip/050/16.
[19] M. Kontsevich and Y. Soibelman, “Stability structures, motivic Donaldson-Thomas invariants and cluster transformations”, [arXiv:0811.2435] (2008).
[20] L. Susskind and E. Witten, “The Holographic Bound in Anti-de Sitter Space”, [arXiv:hep-th/9805114] (1998).
[21] A. W. Peet, “TASI lectures on black holes in string theory”, [arXiv:hep-th/0008241] (2000).
[22] Y. Chen and G. Vidal, “Entanglement contour”, J. Stat. Mech. P10011 (2014) DOI:10.1088/1742-5468/2014/10/P10011.