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Abstract. We reinterpret the recent prescription for temporal entanglement entropy
via analytic continuation in holographic quantum field theories from the vantage point
of emergent relativistic quantum field theories (QFTs) arising from quantum many-
body systems. By framing this analytic continuation in terms of tensor network con-
structions and saddle point structures in holography, we identify the operational un-
derpinnings that connect non-relativistic microscopic models to low-energy temporal
entanglement phenomena. We provide a physical justification for complex extremal
surfaces and elaborate on the non-commutativity of analytic continuation and saddle
selection, supporting these insights with analogies to quantum spin chains and Gaus-
sian states. Our analysis reveals that the geometrization of time in strongly correlated
many-body systems is not merely formal but possesses physically interpretable mani-
festations rooted in UV/IR correspondence and tensor network dualities.
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1 Introduction

Entanglement has emerged as a foundational concept bridging quantum information theory,
quantum many-body physics, and the holographic principle in quantum gravity. Initially ex-
plored through spatial bipartitions on constant-time slices, entanglement entropy has become
a central object in understanding phenomena such as topological phases, quantum phase
transitions, renormalization group (RG) flows, and the AdS/CFT correspondence [1–3]. In
recent years, the scope of entanglement has expanded beyond static configurations to include
entanglement in time, or temporal entanglement, which opens new avenues for investigating
the quantum structure of spacetime and dynamical correlation patterns in quantum systems.

A particularly intriguing development in this direction is the proposal by Heller, Ori,
and Serantes [4] for defining entanglement entropy across timelike separations via analytic
continuation. Their construction is formulated in holographic quantum field theories, where
extremal surfaces in AdS spacetime are continued into the complexified bulk geometry, pro-
viding a novel route to accessing temporal entanglement. This idea resonates with broader
efforts to understand the role of time in quantum entanglement, especially in systems where
Lorentz invariance emerges only at low energies.

In this work, we reinterpret this analytic continuation prescription through the lens
of emergent relativistic QFTs arising from discrete quantum many-body systems. Such
systems, ranging from quantum spin chains to tensor network states, often serve as UV-
complete models that exhibit approximate Lorentz and conformal invariance at criticality [5].
By studying how temporal entanglement manifests in these settings, we aim to uncover the
operational underpinnings of complex extremal surfaces and their connection to coarse-
grained descriptions of time-evolved quantum states.

Tensor network approaches provide a particularly fruitful framework for exploring these
ideas. Temporal Matrix Product States (tMPS) and other real-time evolution methods
encode quantum correlations along the time direction [6,7], naturally introducing non-
Hermitian structures and pseudoentropy measures [8]. These constructions bear a deep
resemblance to complexified path integrals in holography, where analytically continued ge-
ometries govern entanglement across non-spacelike intervals. Moreover, tensor networks
such as MERA geometrize the renormalization process, echoing the radial direction of AdS
spacetimes and reinforcing the conceptual bridge between tensor architectures and holo-
graphic dualities [9,10].

The emergent Lorentz invariance in critical lattice models offers a physical motivation
for analytic continuation between space and time. In such systems, spatial bipartitions can,
under effective Lorentz boosts, be transformed into temporal partitions, hinting at a uni-
fied geometric language for both spatial and temporal entanglement [2,11]. Importantly,
this continuation is non-trivial: as emphasized in [4], the analytic continuation and saddle
point minimization processes do not generally commute. This non-commutativity has direct
analogues in many-body physics, where metastable states, symmetry breaking, and com-
peting low-energy sectors lead to multiple effective saddles in variational or path-integral
formulations [12].

By grounding the holographic analytic continuation in the physics of spin chains and
time-evolved Gaussian states [13,14], we show that the emergence of complex extremal sur-
faces is not merely a formal artifact, but a manifestation of real dynamical structures in
entangled many-body systems. These insights further suggest that the geometrization of
time through tensor networks is tied to physically measurable observables, such as entan-
glement dynamics and circuit complexity [15].

Our investigation highlights how UV/IR duality, typically understood in terms of scale
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separation in field theory, also governs the analytic structure of entanglement in time. In
lattice models, the small-time limit of entanglement entropy recovers vacuum-like behav-
ior, whereas long-time evolution encodes thermalization and operator spreading [16]. These
features reflect in the behavior of extremal surfaces after continuation, where physical ex-
pectations and geometric criteria must be jointly satisfied.

In summary, this work provides a many-body reinterpretation of temporal entanglement
in holographic QFTs by elucidating its correspondence with tensor network constructions
and emergent spacetime symmetries. Our results reinforce the physical legitimacy of com-
plexified entanglement structures and pave the way for exploring temporal entanglement in
quantum simulators, non-equilibrium systems, and platforms exhibiting quantum criticality.

2 Analytic Continuation and Many-Body Systems
The proposal of analytic continuation to define temporal entanglement entropy [4] invites
reinterpretation through the operational frameworks of quantum many-body systems, espe-
cially those that realize emergent relativistic behavior. In holographic theories, the contin-
uation involves deforming extremal surfaces in AdS into complexified geometries to probe
entanglement across timelike intervals. To understand how such constructions arise from
lattice systems, we consider the analytic structure of correlation functions and entanglement
measures in discretized models with Lorentz-invariant low-energy sectors.

Let us denote a quantum many-body ground state |Ψ⟩ in 1 + 1 dimensions, defined
on a spatial lattice with lattice spacing a, governed by a local Hamiltonian H. Entan-
glement across a spatial interval A = [x1, x2] is quantified via the reduced density matrix
ρA = TrĀ⟨Ψ|Ψ⟩, and the von Neumann entropy SA = −TrρA log ρA captures the spatial
entanglement. The standard replica trick expresses SA as the analytic continuation

SA = − lim
n→1

∂nTrρ
n
A, (2.1)

where the quantity TrρnA is interpreted geometrically in terms of path integrals on n-sheeted
Riemann surfaces.

To investigate temporal entanglement, we rotate the spatial interval A through the light
cone via a Wick rotation x → it, leading to a Lorentzian region between events p and q
separated by proper time τ . In many-body systems, the counterpart of this procedure is a
deformation of the spatial cut into the temporal domain. Instead of evaluating ρA on a fixed
time slice, we consider two-time reduced density matrices ρt1t2 , constructed from forward
and backward time evolution:

ρt1t2 = TrR̄
(
U(t2 − t1)ρ0U

†(t2 − t1)
)
, (2.2)

where R denotes the region in the Hilbert space supporting observables between t1 and t2,
and U(t) = e−iHt is the time evolution operator. This construction is closely related to
Loschmidt echoes and return amplitudes, with Trρnt1t2 admitting a natural representation
as a Schwinger-Keldysh contour with replicated forward and backward branches.

Tensor networks, particularly temporal matrix product states (tMPS) [6], offer a com-
putational handle on this structure. A tMPS evolves a product state |ϕ⟩ under imaginary
or real-time evolution and stores intermediate entanglement via tensors arranged along the
temporal axis:

|ΨT ⟩ =
∑
{st}

Tr [As1(t1)A
s2(t2) · · ·AsT (tT )] |s1s2 · · · sT ⟩. (2.3)
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The network naturally accommodates analytic continuation t → ix by deforming the time
axis into a complex contour, enabling entanglement measures to interpolate between spatial
and temporal regimes.

This setup permits a replica path integral description even in the temporal domain.
Consider the second Rényi entropy S2 = − log Trρ2t1t2 . Using the path integral formalism,
we evaluate

Trρ2t1t2 =

∫
D[ϕ1, ϕ2] e

i(S[ϕ1]−S[ϕ2]), (2.4)

subject to cyclic boundary conditions that exchange fields at times t1 and t2. After Wick
rotation to imaginary time, the exponent becomes −(SE [ϕ1] +SE [ϕ2]), recovering the stan-
dard Euclidean picture. In contrast, in the Lorentzian regime the path integral includes
interference phases, which become relevant near the light cone.

These observations motivate defining a complexified entanglement entropy functional
SE(z), where z parametrizes the continuation path in the complexified spacetime. In holog-
raphy, this corresponds to evaluating the area of complex extremal surfaces anchored to
boundary points analytically continued across the light cone. In tensor network models, we
propose a functional form

SE(z) = min
Cz

A[Cz], (2.5)

where Cz is a geodesic or minimal tensor path through the network, and A is the corre-
sponding cost function, related to circuit complexity or entanglement flux. We conjecture
that under analytic continuation, A exhibits a saddle-point structure analogous to the holo-
graphic bulk area, and that the dominant saddle after continuation reflects the competition
between different coarse-grained tensor contractions.

A particularly enlightening case is that of critical 1D chains described by conformal field
theory (CFT). In Euclidean CFT, entanglement across an interval A = [x1, x2] yields [2]

S
(n)
A =

c

6

(
1 +

1

n

)
log

(
x2 − x1

ϵ

)
, (2.6)

where c is the central charge and ϵ is a UV cutoff. Upon analytic continuation x → x+ it,
the interval becomes timelike or null, and the logarithmic dependence picks up imaginary
contributions. The real part of the entropy can be interpreted as the physically observable
entanglement across the temporal cut, while the imaginary part encodes coherence effects
or modular phases.

Thus, analytic continuation defines a natural extension of entanglement entropy into
complexified kinematics, and many-body systems?especially those modeled by tMPS or gov-
erned by emergent conformal symmetry?provide a precise platform to probe this extension.
In this framework, one may derive a generalized entanglement functional that interpolates
between spatial and temporal regimes:

Sn(∆z) =
c

6

(
1 +

1

n

)
log

(
∆z

ϵ

)
, ∆z =

√
(x2 − x1)2 − (t2 − t1)2 + iδ, (2.7)

where δ ensures the correct branch cut selection in the complex plane. This formula smoothly
connects spatial and temporal entanglement and recovers the correct limits in both regimes.

Figure 1 provides a geometric illustration of the analytic continuation procedure used
to define temporal entanglement from spatial intervals. The horizontal axis represents the
spatial coordinate x, while the vertical axis denotes time t. A spatial bipartition, initially
defined between the endpoints x1 and x2 on a constant-time slice t = 0, is shown as a dashed
black line. To probe entanglement across time, the interval is rotated through the light cone
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Figure 1: Complexified continuation of an interval from a spatial slice (x axis) to a tem-
poral slice (t axis). The blue arc represents the analytic continuation path in complexified
spacetime, mapping a spatial entangling interval to a temporal one.

via analytic continuation, mapping the spatial endpoint x2 into a point t2 along the time
axis. This transformation is visualized as a curved trajectory in the complexified spacetime
plane, represented by the blue arc. The red dashed line marks the final configuration,
corresponding to a timelike interval between events t1 and t2. This deformation mimics a
complex Lorentz boost and captures how real-time evolution entangles regions not separated
by space but by time. In the context of tensor networks or holography, such a continuation
defines new extremal surfaces or tensor contractions that encode the resulting temporal
entanglement structure. The plot highlights the conceptual shift from conventional spatial
partitions to genuinely dynamical cuts, central to the framework discussed in this work.

Finally, we emphasize that the analytic continuation is not merely a mathematical trick
but reflects operational procedures in quantum simulation. Experimental protocols involving
quantum quenches, two-time correlation functions, and temporal mutual information can
directly access the structures described above [17], making this approach both physically
meaningful and experimentally relevant.

3 Saddle Structures and Non-Commutativity
A central insight of the temporal entanglement framework proposed in [4] is the non-
commutativity between analytic continuation and saddle point selection. This subtle phe-
nomenon reflects the intricate structure of path integrals in complexified geometries and
has meaningful analogues in quantum many-body systems, particularly in those exhibiting
metastability, dynamical phase transitions, or symmetry-breaking sectors. From a technical
standpoint, it implies that the order in which one performs analytic continuation and eval-
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uates the dominant contribution to an observable, such as entanglement entropy, can yield
qualitatively distinct outcomes.

To formalize this, consider the Euclidean path integral representation of the n-th Rényi
entropy, TrρnA, as a functional integral over fields ϕ defined on an n-sheeted branched man-
ifold:

TrρnA =

∫
Mn

D[ϕ] e−SE [ϕ]. (3.1)

The analytic continuation to Lorentzian signature involves deforming the integration contour
and the manifold Mn into a complexified spacetime. In the semiclassical limit, where ℏ → 0
or the central charge c ≫ 1, this integral is approximated by a saddle-point expansion:

TrρnA ≈
∑
i

e−SE [ϕi], (3.2)

where ϕi label classical saddle configurations. Importantly, the analytic continuation modi-
fies both the action SE [ϕ] → S[ϕ] and the boundary conditions, thereby reshaping the entire
saddle structure.

If one performs the saddle point evaluation in the Euclidean theory prior to continuation,
the dominant contribution comes from the minimal real Euclidean action. However, if the
continuation is applied first, the relevant extremum may lie off the real slice, and a different
saddle with complexified geometry could dominate. This discrepancy arises due to Stokes
phenomena in complex analysis, where the steepest descent contours shift discontinuously
as parameters are varied [18].

To illustrate this, let us consider a toy model: a scalar field in 1 + 1 dimensions with
effective Euclidean action near a saddle expanded as

SE [ϕ] ≈ S0 +
1

2

∫
dx δϕ(x)

(
−∂2

x +m2
)
δϕ(x), (3.3)

where m2 may become complex under continuation x → it. If m2 → m2 + iµ for some
µ ∈ R, then the quadratic form acquires complex eigenvalues, and the path integral becomes
dominated by deformed saddles in complex field space. Such configurations, while non-
perturbative, can be reliably accessed via Picard-Lefschetz theory [19], which systematically
accounts for the contributions of complex saddles connected to the original contour.

In many-body systems, the analog of this phenomenon appears in tensor network path
integrals or transfer matrix decompositions. For instance, consider a quantum spin chain at
criticality, whose partition function can be expressed via transfer matrices T (θ) parametrized
by an angular deformation θ corresponding to a Wick rotation:

Z(θ) = Tr
[
T (θ)L

]
, T (θ) = e−ϵH+iθP , (3.4)

where P is the momentum operator and ϵ is a regularization parameter. Different values of θ
interpolate between spatial and temporal evolutions. The spectrum of T (θ) determines the
dominant contribution, and as θ crosses critical lines in the complex plane, level crossings
or avoided crossings can occur, signaling a transition between dominant saddles. Such
bifurcations correspond to qualitative changes in the entanglement entropy scaling and are
direct signatures of the non-commutativity discussed.

Moreover, holographic duals of this structure involve multiple extremal surfaces satisfying
the homology constraint but differing in complexified area. Let A[γ] be the generalized area
functional for an extremal surface γ, potentially complex-valued. Then the entanglement
entropy is given by

S = min
γ

ℜ
(
A[γ]

4GN

)
, (3.5)
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where the minimization is over all admissible complex saddles. The analytic continuation
deforms the set of admissible γ, potentially introducing new saddles not visible in the Eu-
clidean sector. The phenomenon where the minimal real part shifts discontinuously across
a boundary in parameter space is another manifestation of Stokes phenomena, now in geo-
metric terms.

We propose a general criterion for when saddle non-commutativity becomes physically
significant: it occurs when the analytic continuation induces a bifurcation in the saddle
landscape, such that multiple complex saddles become nearly degenerate in ℜS[ϕ]. This is
analogous to Landau-Ginzburg potentials with metastable minima, and can be detected by
analyzing the Hessian of the effective action:

δ2S[ϕ] ∼ λ1 + iλ2, withℜλ1 ≈ 0, (3.6)

signaling the emergence of a new competing saddle as a function of the continuation param-
eter.

In tensor networks, this corresponds to alternative contraction schemes with similar com-
putational cost but different physical interpretations. For instance, in a time-folded tensor
network representing TrρnA, one can deform the contraction contour around the entangling
surface to explore different saddle geometries, much like one explores different geodesics in
the bulk. The dominance of a given path depends sensitively on the analytic structure of
the underlying tensors and the imposed boundary conditions.

Figures 2 and 3 illustrate two complementary aspects of the saddle structure underlying
analytic continuation in temporal entanglement calculations.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Continuation parameter 

0.6
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Saddle Switching under Analytic Continuation

Saddle 1
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Switch point

Figure 2: Switching of dominant saddle contributions under analytic continuation. The
two candidate saddles exchange dominance at a critical value of the continuation parameter
θ = π/2, illustrating the non-commutativity between continuation and extremization.

Figure 2 depicts the switching behavior between two competing saddle points as a func-
tion of a continuation parameter θ, which can be thought of as an angular deformation
interpolating between spatial and temporal cuts. Each curve represents the real part of the
action evaluated on a distinct saddle. As the parameter evolves, the originally subdominant
saddle becomes energetically favorable, overtaking the initial extremum at a critical point
θ = π/2. This transition reflects the non-commutativity between analytic continuation and
saddle point selection: had one chosen the dominant saddle in the unrotated (Euclidean)
theory, the resulting entanglement estimate would differ from that obtained after contin-
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uation. Such saddle switching is reminiscent of phase transitions in effective theories and
signals the presence of non-analyticities in entanglement observables.
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Figure 3: Phase structure of saddle dominance in the complex plane. The shaded regions
indicate which saddle dominates as a function of the complexified continuation variable z.
The transition boundary marks a non-analyticity in saddle dominance, signaling a Stokes
phenomenon.

Figure 3 provides a broader view of the complexified parameter space, displaying the
phase structure of saddle dominance across the complex plane. Each shaded region indicates
the domain where a particular saddle contributes most significantly to the path integral. The
boundary between these regions corresponds to a Stokes line, across which the identity of
the dominant saddle changes. These saddle bifurcation curves are governed by the relative
real parts of the action, and their crossing reflects a topological restructuring of the steepest
descent contours. This picture provides a geometric explanation for the sudden change in
entanglement behavior upon continuation and helps identify parameter regimes where subtle
quantum interference or coherence effects may emerge.

Together, these figures emphasize that analytic continuation is not merely an extrapola-
tion of real-valued quantities but introduces qualitative changes in the entanglement land-
scape. The transition between saddles and the resulting non-analyticities are not artifacts
of approximation but essential features of the underlying quantum structure, potentially
observable in controlled quantum simulation experiments and tensor network analyses.

In summary, the non-commutativity of analytic continuation and saddle selection re-
flects a deep interplay between complex geometry and quantum entanglement structure.
Whether viewed through the lens of complex path integrals, tensor network contractions,
or holographic extremal surfaces, this non-trivial ordering exposes the layered nature of en-
tanglement dynamics. The emergence of competing saddles after continuation signals phase
transitions in the effective information geometry, and their study opens a rich arena for
exploring novel quantum phenomena beyond the reach of traditional Euclidean methods.
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4 UV-IR Correspondence and Emergent Geometry
The principle of UV-IR correspondence, originally formulated in the context of AdS/CFT [20,
21], posits a duality between short-distance (ultraviolet) degrees of freedom on the bound-
ary and long-distance (infrared) features in the bulk geometry. In the context of temporal
entanglement, this principle acquires new significance, as analytic continuation rotates spa-
tial regions into timelike intervals, effectively mapping UV modes localized in space to IR
behavior extended across time. We argue that this geometric reinterpretation persists not
only in holographic models but also in tensor network realizations of emergent quantum
field theories and their temporal evolution.

Let us consider a system governed by a local Hamiltonian H with a characteristic corre-
lation length ξ. In ground states or low-temperature regimes, spatial entanglement entropy
SA for a region of size ℓ typically satisfies an area law SA ∼ ℓ0 for gapped systems, or
exhibits logarithmic corrections SA ∼ log ℓ in critical theories. Upon analytic continuation
to a timelike interval of duration τ , the entanglement across this temporal region reflects the
spread of quantum correlations in time. However, due to UV/IR mixing under continuation,
small spatial regions do not necessarily map to small-time intervals. Rather, the effective
size of the temporal entangling region involves a dynamical rescaling:

τeff ∼ ℓz

v
, (4.1)

where z is the dynamical exponent and v is the effective Lieb-Robinson velocity of the
system. For Lorentz-invariant systems (z = 1), this yields τeff ∼ ℓ, but for generic many-
body systems with anisotropic scaling, this continuation becomes nontrivial.

To elucidate the entanglement structure across time, we examine the mutual information
between events at different times:

I(t1 : t2) = St1 + St2 − St1∪t2 , (4.2)

where Sti denotes the entropy associated with measurement at time ti, and St1∪t2 is the joint
entropy across the time-separated region. In lattice systems, this quantity probes the extent
to which local operators retain coherence across time, serving as a diagnostic for information
flow and scrambling. When evaluated via tensor network evolutions, such as time-evolving
block decimation (TEBD) or temporal MERA structures, the mutual information acquires a
geometrical interpretation: it measures the minimal number of entangling tensors connecting
the events along the causal cone, analogous to minimal geodesics in holography.

The key observation is that analytic continuation warps this causal structure. While
spatial entanglement probes the boundary of a causal diamond in spacetime, temporal en-
tanglement corresponds to surfaces that traverse the interior. In holographic language, the
extremal surfaces associated with temporal intervals dip deeper into the bulk, and their area
becomes sensitive to IR data even when the endpoints are UV-localized. This results in a
renormalization of the entanglement entropy:

ST (τ) ∼
c

3
log

(τ
ϵ

)
+ α

(
τ

ξ

)δ

+ · · · , (4.3)

where c is the central charge, ϵ the UV cutoff, and the subleading power-law term reflects
IR dressing due to coarse-graining effects or emergent hydrodynamics. The exponent δ
depends on the universality class of the system. This correction, negligible in short-time
limits, becomes dominant in the IR, highlighting the temporal analog of area-law violations.
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Tensor networks such as MERA and its temporal analogs naturally encode this behavior.
In MERA, entanglement entropy corresponds to the number of disentanglers intersected by
a causal cone, and UV/IR correspondence is geometrized by layers in the network. In tem-
poral networks, such as time-folded tensor evolutions or causal influence diagrams, entangle-
ment across time is associated with the complexity of forward-backward tensor contractions.
This motivates defining an effective temporal entanglement geometry, whose volume or area
functional approximates the complexity of reconstructing time-evolved subsystems.

Inspired by this idea, we propose a variational principle for temporal entanglement based
on minimal circuit complexity. Let C[O(t)] denote the complexity of preparing a time-
evolved observable O(t) from the vacuum. Then the temporal entanglement entropy across
[t1, t2] satisfies the bound:

ST (t1, t2) ≤ min
C

{log dimHC} ∼ min
γ

A[γ], (4.4)

where HC is the Hilbert space accessible through the circuit C, and γ denotes a minimal
tensor path in the network geometry. This connects the area of complex extremal surfaces in
AdS with the computational cost of encoding temporal correlations in many-body systems.

Finally, we note that the UV/IR correspondence in temporal entanglement naturally
leads to a temporal renormalization group, where increasing the temporal resolution reveals
finer entanglement structure akin to integrating in UV modes. This observation resonates
with recent studies on modular flow, operator growth, and entanglement contour func-
tions [22], and suggests that the continuation across the light cone should be viewed not
only as a kinematic deformation but as a renormalization operation in time.

Figures 4 and 5 offer complementary visualizations of the emergent structure of temporal
entanglement as understood from both holographic and tensor network perspectives.

Figure 4 illustrates the geometric interpretation of entanglement across a temporal in-
terval in a complexified bulk spacetime. The horizontal axis represents the boundary time
coordinate, while the vertical axis denotes an emergent radial (bulk) coordinate associated
with IR scales. An extremal surface γ is anchored at two boundary time points t1 and t2,
and extends into the bulk, probing deeper energy scales as it spans the temporal separation.
This curve captures the holographic encoding of temporal entanglement entropy and re-
flects the non-local nature of temporal correlations. The surface resides within a light cone,
marked by gray dashed lines, emphasizing that the entangling region remains causally con-
nected and consistent with Lorentzian kinematics. The geometry suggests that small time
intervals probe only near-boundary (UV) structure, while large intervals extend toward the
IR regime, reinforcing the temporal form of UV/IR correspondence.

Figure 5 provides an operational realization of this geometry within tensor network ar-
chitectures, specifically in time-folded tensor evolutions. Here, each rectangle denotes a
local tensor acting along the time direction, forming a discrete analogue of real-time path
integrals. The blue-outlined boxes mark the causal region contributing to the entanglement
between t1 and t2, effectively defining a causal cone. This region contains the entangling
tensors that contract through both forward and backward branches of the evolution, and
determines the entropic structure through their connectivity. The minimal tensor contrac-
tion path through this region is analogous to a geodesic in the bulk, whose effective ”area”
or ”volume” can be related to circuit complexity and entropic cost. This mapping between
geometric and computational pictures strengthens the interpretation of entanglement as an
emergent spatial and temporal structure arising from underlying quantum circuits.

Together, these figures underscore the deep connection between spacetime geometry,
entanglement scaling, and computational representation in quantum many-body systems.
They reveal how analytic continuation into the temporal domain gives rise to well-defined,
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Figure 4: Emergent bulk geometry of temporal entanglement. The extremal surface γ (blue)
dips into the IR region of a complexified bulk spacetime, anchored at times t1 and t2 on
the boundary. This geometry captures the non-local structure of entanglement across time
intervals.

physically interpretable structures that mirror their spatial counterparts, while extending
the holographic dictionary into dynamical regimes. In summary, temporal entanglement
provides a new lens through which the geometry of entanglement and the scaling structure
of quantum field theories can be examined. By identifying the correspondence between
UV-localized temporal events and IR-dressed geometries?both in holography and tensor
networks–we uncover an emergent bulk spacetime interpretation of entanglement in time.
This duality enriches the dictionary between quantum information and geometry and opens
the door to new analytic and numerical tools for probing dynamics in strongly correlated
systems.

5 Conclusion
We have presented a reinterpretation of analytic continuation techniques for temporal en-
tanglement entropy, originally developed in holographic quantum field theories, from the
perspective of emergent relativistic QFTs that arise in quantum many-body systems. Our
analysis provides a physically grounded framework that connects complex extremal sur-
faces in AdS geometries to operationally well-defined procedures in lattice systems, tensor
networks, and path integral formulations. In particular, we have emphasized how tensor
network architectures, especially temporal matrix product states and time-folded evolution
schemes, naturally accommodate entanglement across time-like intervals and offer a micro-
scopic basis for understanding holographic continuation.

A key result of our investigation is the non-commutativity between analytic continuation
and saddle point selection, which we interpreted through the lens of competing semiclas-
sical configurations, complexified field configurations, and alternative tensor contraction
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Figure 5: Tensor network representation of time-folded evolution. Each box represents a
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paths. By introducing the notion of saddle bifurcation and identifying signatures of Stokes
phenomena in both holography and many-body dynamics, we have clarified why tempo-
ral entanglement probes genuinely distinct physics from spatial entanglement. Our figures
provided visualizations of how these saddle structures evolve, how dominant contributions
switch under continuation, and how phase boundaries emerge in complexified parameter
space.

Furthermore, we explored the implications of temporal continuation for UV/IR corre-
spondence. We demonstrated that temporal entanglement geometries, whether realized via
extremal bulk surfaces or causal tensor networks, obey a dynamical scaling relation that re-
veals how short-range spatial correlations become long-range temporal entanglement. The
emergent geometry arising from analytic continuation was shown to encode not just entropic
scaling, but also circuit complexity and causal structure. This led us to propose a varia-
tional principle in which the temporal entanglement entropy is bounded by the minimal
computational cost to reconstruct time-evolved subsystems, bridging quantum information,
field theory, and holography in a novel way.

Our study opens several promising avenues for future research. First, the role of com-
plex saddles in non-relativistic or non-integrable models remains largely unexplored, and
numerical tensor network simulations could be used to detect and characterize such saddles
via Rényi entropy diagnostics or pseudoentropy probes. Second, generalizing our analytic
continuation framework to higher dimensions, or to mixed spacetime cuts, could illumi-
nate how temporal entanglement behaves near quantum critical points or under topological
constraints. Third, connections to modular flow and operator spreading suggest that tem-
poral entanglement may offer insights into thermalization, chaos, and complexity growth,
particularly in systems with emergent gravitational duals or quantum simulation platforms.

Ultimately, our results reinforce the idea that the analytic continuation of entanglement
is not a formal exercise but a physical process, one that reveals new aspects of quantum
correlations when viewed through the lens of time. As quantum technologies advance, and
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real-time measurement of entanglement becomes increasingly feasible, we anticipate that the
structures uncovered here will serve as guiding principles for both theoretical exploration
and experimental discovery.
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