[1] S. Lloyd, “Ultimate physical limits to computation”, Nature 406, 1047 (2000). DOI:10.1038/35023282
[2] L. Susskind, “Computational Complexity and Black Hole Horizons”, Fortsch. Phys. 64, 24 (2016). DOI:10.1002/prop.201500092
[3] A. R. Brown, D. A. Roberts, L. Susskind, B. Swingle and Y. Zhao, “Holographic Complexity Equals Bulk Action?”, Phys. Rev. Lett. 116(19), 191301 (2016). DOI: 10.1103/PhysRevLett.116.191301
[4] A. R. Brown, D. A. Roberts, L. Susskind, B. Swingle and Y. Zhao, “Complexity, action, and black holes”, Phys. Rev. D 93(8), 086006 (2016). DOI:10.1103/PhysRevD.93.086006
[5] L. Susskind, “Black Holes and Complexity Classes”, [arXiv:1802.02175 [hep-th]].
[6] A. R. Brown, H. Gharibyan, H. W. Lin, L. Susskind, L. Thorlacius and Y. Zhao, “Complexity of Jackiw-Teitelboim gravity”, Phys. Rev. D 99(4), 046016 (2019). DOI:10.1103/PhysRevD.99.046016.
[7] A. R. Brown and L. Susskind, “Second law of quantum complexity”, Phys. Rev. D 97(8), 086015 (2018). DOI:10.1103/PhysRevD.97.086015
[8] L. Susskind, “Entanglement is not enough”, Fortsch. Phys. 64, 49 (2016). DOI:10.1002/prop.201500095
[9] S. Raju, Lessons from the information paradox, Phys. Rept. 943, 1 (2022). DOI:10.1016/j.physrep.2021.10.001
[10] X. A. Zhang, A. Ricarte, D. W. Pesce, M. D. Johnson, N. Nagar, R. Narayan, V. Ramakrishnan, S. Doeleman and D. C. M. Palumbo, “Accessing a New Population of Supermassive Black Holes with Extensions to the Event Horizon Telescope”, DOI: 10.3847/1538-4357/adbd45
[11] N. Tsukamoto and R. Kase, Constraints on the black-hole charges of M87* and Sagittarius A* by changing rates of photon spheres can be relaxed, Phys. Rev. D 110(4), 044065 (2024). DOI:10.1103/PhysRevD.110.044065
[12] L. M. Burko, G. Khanna and S. Sabharwal, “Aretakis hair for extreme Kerr black holes with axisymmetric scalar perturbations”, Phys. Rev. D 107(12), 124023 (2023). DOI:10.1103/PhysRevD.107.124023
[13] A. R. Brown and L. Susskind, “Complexity geometry of a single qubit”, Phys. Rev. D 100(4), 046020 (2019). DOI:10.1103/PhysRevD.100.046020.
[14] A. R. Brown and L. Susskind, “holographic wormhole traversed in a quantum computer”, Nature 612(7938), 41 (2022). DOI:10.1038/d41586-022-03832-z.
[15] M. Doroudiani, A. Naseh and R. Pirmoradian, “Complexity for Charged Thermofield Double States”, JHEP 01, 120 (2020). DOI:10.1007/JHEP01(2020)120
[16] S. S. Hashemi, G. Jafari and A. Naseh, “First law of holographic complexity”, Phys. Rev. D 102(10), 106008 (2020). DOI:10.1103/PhysRevD.102.106008
[17] J. M. Maldacena, “The Large N limit of superconformal field theories and supergravity”, Int. J. Theor. Phys. 38, 1113 (1999). [Adv. Theor. Math. Phys. 2, 231 (1998)] DOI:10.1023/A:1026654312961, 10.4310/ATMP.1998.v2.n2.a1.
[18] E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998). DOI:10.4310/ATMP.1998.v2.n2.a2
[19] F. F. Santos, E. F. Capossoli and H. Boschi-Filho, “AdS/BCFT correspondence and BTZ black hole thermodynamics within Horndeski gravity”, Phys. Rev. D 104(6), 066014 (2021). DOI:10.1103/PhysRevD.104.066014
[20] O. Sokoliuk, F. F. Santos and A. Baransky, “AdS/BCFT correspondence and Lovelock theory in the presence of canonical scalar field”, [arXiv:2206.04054 [hep-th]]
[21] F. F. Santos, M. Bravo-Gaete, O. Sokoliuk and A. Baransky, “AdS/BCFT Correspondence and Horndeski Gravity in the Presence of Gauge Fields: Holographic Paramagnetism/Ferromagnetism Phase Transition”, Fortsch. Phys. 71(12), 2300008 (2023). DOI:10.1002/prop.202300008
[22] F. F. Santos, M. Bravo-Gaete, M. M. Ferreira and R. Casana, “Magnetized AdS/BCFT Correspondence in Horndeski Gravity”, Fortsch. Phys. 72 (2024). DOI: 10.1002/prop.202400088
[23] G. W. Horndeski, “Second-order scalar-tensor field equations in a four-dimensional space”, Int. J. Theor. Phys. 10, 363 (1974). DOI:10.1007/BF01807638
[24] G. W. Horndeski and A. Silvestri, “50 Years of Horndeski Gravity: Past, Present and Future”, Int. J. Theor. Phys. 63(2), 38 (2024). DOI:10.1007/s10773-024-05558-2
[25] C. Charmousis, E. J. Copeland, A. Padilla and P. M. Saffn, “General second order scalar-tensor theory, self tuning, and the Fab Four”, Phys. Rev. Lett. 108, 051101 (2012). DOI:10.1103/PhysRevLett.108.051101
[26] C. Charmousis, E. J. Copeland, A. Padilla and P. M. Saffn, “Self-tuning and the derivation of a class of scalar-tensor theories”, Phys. Rev. D 85, 104040 (2012). DOI:10.1103/PhysRevD.85.104040
[27] J. P. Bruneton, M. Rinaldi, A. Kanfon, A. Hees, S. Schlogel and A. Fuzfa, “Fab Four: When John and George play gravitation and cosmology”, Adv. Astron. 2012, 430694 (2012). DOI:10.1155/2012/430694
[28] L. Heisenberg, “A systematic approach to generalisations of General Relativity and their cosmological implications”, Phys. Rept. 796, 1 (2019). DOI:10.1016/j.physrep.2018.11.006
[29] T. Kobayashi, “Horndeski theory and beyond: a review”, Rept. Prog. Phys. 82(8), 086901 (2019). DOI:10.1088/1361-6633/ab2429
[30] F. F. Santos, “Rotating black hole with a probe string in Horndeski Gravity”, Eur. Phys. J. Plus 135(10), 810 (2020). DOI:10.1140/epjp/s13360-020-00805-x
[31] F. F. Santos, O. Sokoliuk and A. Baransky, “Holographic Complexity of Braneworld in Horndeski Gravity”, Fortsch. Phys. 71(2-3), 2200141 (2023). DOI:10.1002/prop.202200141
[32] M. Bravo-Gaete and F. F. Santos, “Complexity of four-dimensional hairy anti-de-Sitter black holes with a rotating string and shear viscosity in generalized scalar–tensor theories”, Eur. Phys. J. C 82(2), 101 (2022). DOI:10.1140/epjc/s10052-022-10064-y
[33] M. Banados, C. Teitelboim and J. Zanelli, “The Black hole in three-dimensional spacetime”, Phys. Rev. Lett. 69, 1849 (1992). DOI:10.1103/PhysRevLett.69.1849
[34] M. Banados, M. Henneaux, C. Teitelboim and J. Zanelli, “Geometry of the (2+1) black hole”, Phys. Rev. D 48, 1506 (1993). [erratum: Phys. Rev. D 88, 069902 (2013)] DOI:10.1103/PhysRevD.48.1506.
[35] L. Susskind, “Trouble for remnants”, [arXiv:hep-th/9501106 [hep-th]]
[36] P. Braccia, A. L. Cotrone and E. Tonni, “Complexity in the presence of a boundary”, JHEP 02, 051 (2020). DOI:10.1007/JHEP02(2020)051
[37] S. E. Aguilar-Gutierrez, S. Baiguera and N. Zenoni, “Holographic complexity of the extended Schwarzschild-de Sitter space”, JHEP 05, 201 (2024). DOI:10.1007/JHEP05(2024)201
[38] Y. T. Zhou and X. M. Kuang, “Quantum fluctuation on the worldsheet of probe string in BTZ black hole”, Fortsch. Phys. 73, (2025). DOI:10.1002/prop.70001
[39] T. Takayanagi, “Holographic Dual of BCFT”, Phys. Rev. Lett. 107, 101602 (2011). DOI:10.1103/PhysRevLett.107.101602
[40] M. Fujita, T. Takayanagi and E. Tonni, “Aspects of AdS/BCFT”, JHEP 1111, 043 (2011). DOI:10.1007/JHEP11(2011)043
[41] M. Fujita, M. Kaminski and A. Karch, “SL(2,Z) Action on AdS/BCFT and Hall Conductivities”, JHEP 1207, 150 (2012). DOI:10.1007/JHEP07(2012)150
[42] D. Melnikov, E. Orazi and P. Sodano, “On the AdS/BCFT Approach to Quantum Hall Systems”, JHEP 1305, 116 (2013). DOI:10.1007/JHEP05(2013)116
[43] J. M. Magán, D. Melnikov and M. R. O. Silva, “Black Holes in AdS/BCFT and Fluid/Gravity Correspondence”, JHEP 1411, 069 (2014). DOI:10.1007/JHEP11(2014)069
[44] M. Bravo-Gaete and M. Hassaine, “Lifshitz black holes with a time-dependent scalar field in a Horndeski theory”, Phys. Rev. D 89, 104028 (2014). DOI:10.1103/PhysRevD.89.104028
[45] F. Long, S. Chen, M. Wang and J. Jing, “Shadow of a disformal Kerr black hole in quadratic degenerate higher-order scalar–tensor theories”, Eur. Phys. J. C 80(12), 1180 (2020). DOI:10.1140/epjc/s10052-020-08744-8
[46] M. Nozaki, T. Takayanagi and T. Ugajin, “Central Charges for BCFTs and Holography”, JHEP 06, 066 (2012). DOI:10.1007/JHEP06(2012)066
[47] A. Banerjee, A. Kundu and R. R. Poojary, “Rotating black holes in AdS spacetime, extremality, and chaos”, Phys. Rev. D 102(10), 106013 (2020). DOI:10.1103/PhysRevD.102.106013
[48] S. M. Hosseini, K. Hristov and A. Zaffaroni, “An extremization principle for the entropy of rotating BPS black holes in AdS5”, JHEP 07, 106 (2017). DOI:10.1007/JHEP07(2017)106
[49] A. Cabo-Bizet, D. Cassani, D. Martelli and S. Murthy, “Microscopic origin of the Bekenstein-Hawking entropy of supersymmetric AdS5 black holes”, JHEP 10, 062 (2019). DOI:10.1007/JHEP10(2019)062
[50] S. Choi, J. Kim, S. Kim and J. Nahmgoong, “Large AdS black holes from QFT”, [arXiv:1810.12067 [hep-th]]
[51] V. E. Hubeny, “Covariant Residual Entropy”, JHEP 09, 156 (2014). DOI:10.1007/JHEP09(2014)156
[52] N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, “The String landscape, black holes and gravity as the weakest force”, JHEP 06, 060 (2007). DOI:10.1088/1126- 6708/2007/06/060