The Modified Chaplygin Gas and Dark Degeneracy with Phantom Model

Document Type : Regular article

Authors

1 Mississippi State University, Department of Physics and Astronomy, Mississippi State, MS 39762, USA

2 University of Mazandaran, Department of Physics, Faculty of science, P.O.Box 47416–13534, Babolsar, Iran

Abstract

In this paper we consider two known models of dark energy and make dark degeneracy. The first one is modified generalized Chaplygin gas,and the second one is Phantom model. The dark degeneracy leads us to obtain the explicit form of the creation rate. By using the matter density with respect to the rate of dark matter, we define the rate of dark matter creation. In that case, we consider the modified generalized Chaplygin gas (MGCG), and calculate the creation rate and adiabatic sound speed. Also, we introduce the Phantom model and split the corresponding field into components. We write the Klein-Gordon equation and obtain the potential and H in terms of the creation rate.

Keywords

Main Subjects

 

Article PDF

[1] L. H. Ford,“Quantum vacuum energy in general relativity”, Phys. Rev. D 11, 3370 (1975). DOI:10.1103/PhysRevD.11.3370.
[2] J. S. Dowkler and R. Critchley, “Effective Lagrangian and energy-momentum tensor in de Sitter space”, Phys. Rev. D 13, 3224 (1976). DOI: 10.1103/PhysRevD.13.3224.
[3] B. K. Shukla, R.K. Tiwari, A. Beesham, D. Sofuoglu, “Modified Chaplygin gas solutions of f(Q) theory of gravity”, Elsevier, New Astronomy, 117, 102355, (2025). DOI:10.1016/j.newast.2025.102355
[4] A. A. Starobinsky, “A new type of isotropic cosmological models without singularity”, Phys. Lett. B 91, 99 (1980). DOI: 10.1016/0370-2693(80)90670.
[5] S. Carneiro and R. Tavakol, “Thermodynamical properties of dark energy in loop Quantum cosmology”, Gen. Rel. Grav. 41, 2287 (2009). DOI: 10.1142/S0218271811018731.
[6] S. Carneiro, AIP Conf. Proc. “Inflation driven by particle creation”, 61, 1471 (2012). DOI: 10.1142/S2010194512008173.
[7] M. Kunz, “Degeneracy between the dark components resulting from the fact that gravity only measures the total energy-momentum tensor”, Phys. Rev. D 80, 123001 (2009). DOI: 10.1103/PhysRevD.80.123001.
[8] I. Wasserman, “On the Degeneracy Inherent in Observational Determination of the Dark Energy Equation of State”, Phys. Rev. D 66, 123511 (2002). DOI: 10.1103/Phys-RevD.66.123511
[9] C. Rubano and P. Scudellaro, “On some exponential potentials for a cosmological scalar field as quintessence”, Gen. Rel. Grav. 34, 1931 (2002). DOI: 10.1023/A
[10] W. Zimdahl, J. Schwarz, A. B. Balakin and D. Pavon, “Cosmic antifriction and accelerated expansion”, Phys. Rev. D 64, 063501 (2001). DOI: 10.1103/PhysRevD.64.063501.
[11] S. Del Campo, R. Herrerg and D. Pavon, “Interacting models may be key to solve the cosmic coincidence problem”, JCAP 0901, 020 (2009). DOI: 10.1088/1475-7516/2009/01/020.
[12] L. P. Chimento, “Linear and nonlinear interactions in the dark sector”, Phys. Rev. D 81, 043525 (2010). DOI: 10.1103/PhysRevD.81.043525.
[13] J. H. He, B. Wang and E. Abdalla, “Testing the interaction between dark energy and dark matter via latest observations”, Phys. Rev. D 83, 063515 (2011). DOI:10.1103/PhysRevD.83.063515.
[14] A. Kamenshchik, U. Moschella and V. Pasquier, “Chaplygin-like gas and branes in black hole bulks”, Phys. Lett. B 7, 487 (2000). DOI: 10.1016/S0370-269328002900805-4.
[15] A. Kamenshchik, U. Moschella and V. Pasquier, “An alternative to quintessence”, Phys. Lett. B 511, 265 (2001). DOI: 10.1016/S0370-2693
[16] N. Bilic, G. B. Tupper and R. D. Viollier, “Unification of dark matter and dark energy: the inhomogeneous Chaplygin gas”, Phys. Lett. B 535, 17 (2002). DOI: 10.1016/S0370-2693
[17] Y. Wang, D. Wands, L. Xu, J. De- Santiago and A. Hojjati, “Cosmological constraints on a decomposed Chaplygin gas”, Phys. Rev. D 87, 083503 (2013). DOI: 10.1103/Phys-RevD.87.083503
[18] D. Wands, J. De- Santiago and y. Wang, “Inhomogeneous vacuum energy”, Class. Quant. Grav. 29, 145017 (2012). DOI: 10.1088/0264-9381/29/14/145017.[19] J. Zheng, Sh. Cao, Y. Lian, T. Liu, Y. Liu, Z-H Zhu, “Revisiting Chaplygin gas cosmologies with the recent observations of high-redshfit quasars”, The European Physical Journal C 82, 582, (2022). DOI: 10.1140/epjc/s10052-022-10517-4
[20] M. C. Bento, O. Bertolami and A. A. Sen, “Generalized Chaplygin gas, accelerated expansion, and dark-energy-matter unification”, Phys. Rev. D 66, 043507 (2002). DOI:10.1103/PhysRevD.66.043507.
[21] A. Tita, B. Gumjudpai, P. Srisawad, “Dynamics of holographic dark energy with apparent-horizon cutoff and non-minimal derivative coupling gravity in non-flat FLRW universe”, Elsevier, Physics of the Dark Universe, 45, 101542, (2024). DOI:10.1016/j.dark.2024.101542.
[22] S. D. Campo, J. C. Fabris, R. Herrera, W. Zimdahl, “On holographic dark-energy models”, Phys. Rev. D 83, 123006 (2011). DOI: 10.1103/PhysRevD.83.123006.
Volume 5, Issue 1
February 2025
Pages 108-122
  • Receive Date: 31 January 2025
  • Revise Date: 07 February 2025
  • Accept Date: 19 February 2025