[1] L. H. Ford,“Quantum vacuum energy in general relativity”, Phys. Rev. D 11, 3370 (1975). DOI:10.1103/PhysRevD.11.3370.
[2] J. S. Dowkler and R. Critchley, “Effective Lagrangian and energy-momentum tensor in de Sitter space”, Phys. Rev. D 13, 3224 (1976). DOI: 10.1103/PhysRevD.13.3224.
[3] B. K. Shukla, R.K. Tiwari, A. Beesham, D. Sofuoglu, “Modified Chaplygin gas solutions of f(Q) theory of gravity”, Elsevier, New Astronomy, 117, 102355, (2025). DOI:10.1016/j.newast.2025.102355
[4] A. A. Starobinsky, “A new type of isotropic cosmological models without singularity”, Phys. Lett. B 91, 99 (1980). DOI: 10.1016/0370-2693(80)90670.
[5] S. Carneiro and R. Tavakol, “Thermodynamical properties of dark energy in loop Quantum cosmology”, Gen. Rel. Grav. 41, 2287 (2009). DOI: 10.1142/S0218271811018731.
[6] S. Carneiro, AIP Conf. Proc. “Inflation driven by particle creation”, 61, 1471 (2012). DOI: 10.1142/S2010194512008173.
[7] M. Kunz, “Degeneracy between the dark components resulting from the fact that gravity only measures the total energy-momentum tensor”, Phys. Rev. D 80, 123001 (2009). DOI: 10.1103/PhysRevD.80.123001.
[8] I. Wasserman, “On the Degeneracy Inherent in Observational Determination of the Dark Energy Equation of State”, Phys. Rev. D 66, 123511 (2002). DOI: 10.1103/Phys-RevD.66.123511
[9] C. Rubano and P. Scudellaro, “On some exponential potentials for a cosmological scalar field as quintessence”, Gen. Rel. Grav. 34, 1931 (2002). DOI: 10.1023/A
[10] W. Zimdahl, J. Schwarz, A. B. Balakin and D. Pavon, “Cosmic antifriction and accelerated expansion”, Phys. Rev. D 64, 063501 (2001). DOI: 10.1103/PhysRevD.64.063501.
[11] S. Del Campo, R. Herrerg and D. Pavon, “Interacting models may be key to solve the cosmic coincidence problem”, JCAP 0901, 020 (2009). DOI: 10.1088/1475-7516/2009/01/020.
[12] L. P. Chimento, “Linear and nonlinear interactions in the dark sector”, Phys. Rev. D 81, 043525 (2010). DOI: 10.1103/PhysRevD.81.043525.
[13] J. H. He, B. Wang and E. Abdalla, “Testing the interaction between dark energy and dark matter via latest observations”, Phys. Rev. D 83, 063515 (2011). DOI:10.1103/PhysRevD.83.063515.
[14] A. Kamenshchik, U. Moschella and V. Pasquier, “Chaplygin-like gas and branes in black hole bulks”, Phys. Lett. B 7, 487 (2000). DOI: 10.1016/S0370-269328002900805-4.
[15] A. Kamenshchik, U. Moschella and V. Pasquier, “An alternative to quintessence”, Phys. Lett. B 511, 265 (2001). DOI: 10.1016/S0370-2693
[16] N. Bilic, G. B. Tupper and R. D. Viollier, “Unification of dark matter and dark energy: the inhomogeneous Chaplygin gas”, Phys. Lett. B 535, 17 (2002). DOI: 10.1016/S0370-2693
[17] Y. Wang, D. Wands, L. Xu, J. De- Santiago and A. Hojjati, “Cosmological constraints on a decomposed Chaplygin gas”, Phys. Rev. D 87, 083503 (2013). DOI: 10.1103/Phys-RevD.87.083503
[18] D. Wands, J. De- Santiago and y. Wang, “Inhomogeneous vacuum energy”, Class. Quant. Grav. 29, 145017 (2012). DOI: 10.1088/0264-9381/29/14/145017.[19] J. Zheng, Sh. Cao, Y. Lian, T. Liu, Y. Liu, Z-H Zhu, “Revisiting Chaplygin gas cosmologies with the recent observations of high-redshfit quasars”, The European Physical Journal C 82, 582, (2022). DOI: 10.1140/epjc/s10052-022-10517-4
[20] M. C. Bento, O. Bertolami and A. A. Sen, “Generalized Chaplygin gas, accelerated expansion, and dark-energy-matter unification”, Phys. Rev. D 66, 043507 (2002). DOI:10.1103/PhysRevD.66.043507.
[21] A. Tita, B. Gumjudpai, P. Srisawad, “Dynamics of holographic dark energy with apparent-horizon cutoff and non-minimal derivative coupling gravity in non-flat FLRW universe”, Elsevier, Physics of the Dark Universe, 45, 101542, (2024). DOI:10.1016/j.dark.2024.101542.
[22] S. D. Campo, J. C. Fabris, R. Herrera, W. Zimdahl, “On holographic dark-energy models”, Phys. Rev. D 83, 123006 (2011). DOI: 10.1103/PhysRevD.83.123006.