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Abstract. In this paper, we consider two known models of dark energy and make
dark degeneracy. The first one is a modified generalized Chaplygin gas, and the second
one is the Phantom model. The dark degeneracy leads us to obtain the explicit form of
the creation rate. By using the matter density with respect to the rate of dark matter,
we define the rate of dark matter creation. In that case, we consider the modified
generalized Chaplygin gas (MGCG), and calculate the creation rate and adiabatic sound
speed. Also, we introduce the Phantom model and split the corresponding field into
components. We write the Klein-Gordon equation and obtain the potential and H in
terms of the creation rate.
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1 Introduction

Over the last decades, cosmology has seen high-quality data become available. The most
surprising conclusion from these data is the existence of a dark contribution to the energy
density in the universe, which seems to make up 95 percent of the total energy density
today, on the other hand, the vacuum energy in expanding space-time faces a problem in
theoretical cosmology and quantum field theories. This problem creates some differences
between the vacuum energy density and the observed value in cosmology. Also, we note
that the vacuum energy density is regularized by imposing an ultraviolet cutoff on the
order of the Planck mass. So, the results of vacuum energy are theoretical with a cutoff
of 122 orders of magnitude the observed value. Also, if we use cutoff by the QCD vacuum
transition the result is still 40 orders above the observed. On the other hand in flat space-
time, the vacuum energy-momentum tensor is zero. So, in curve space-time the vacuum
density is non zero and must be derived by an appropriate renormalization procedure. In
de Sitter space-time the vacuum density will be as Λ ≃ H2 (H is the expansion rate) [1–4].
As we know the result Λ ≃ H2 creates a radiation phase and the vacuum density decays
producing relativistic matter [5]. Any model with matter creation from a decaying vacuum
has phenomenological status, because vacuum energy-momentum conservation is one of the
conditions behind renormalization techniques [6]. The scaling of the vacuum density with
H2 from the inflation period can explain the back reaction of relativistic particle creation.
Also, several arguments will be considered in de Sitter space-time PΛ = −Λ. In the present
FLRW space-time, observations show that the universe is in accelerated expansion. This
means that the dark energy equation of state parameter ω, defined by

P = ωρ. (1.1)

We note here the background observations can not fix this function because the effects of
dark energy and dark matter are degenerated [7–9]. Such degeneracy can be broken at the
perturbation level. In that case, it defined dark matter as the clustering component observed
in galaxies and clusters. Also, dark matter is assumed to be cold, that is non relativistic. So,
the degeneracy will be reduced to two distinct classes of dark energy models with ω = −1
namely ΛCDM model, with constant Λ, and interacting models with an energy flux from
dark energy to dark matter.

A holographic perspective in dark energy models suggests that the universe may be like
a giant hologram, in which the observed three-dimensional reality is encoded on a distant
two-dimensional boundary, and the energy driving the accelerating expansion of the universe
(dark energy) is related to the information contained in a space that is essentially lower
than the space it is supposed to be. This concept is based on the holographic principle
in theoretical physics, which states that the information content of a volume is limited
by the area of its boundary. The holographic dark energy model, in which, according to
the Hubble scale, the density of dark energy is inversely proportional to the square of the
size of the universe, is the most notable model. This approach provides a solution to the
problem of cosmic coincidence and ties dark energy to the thermodynamics of space-time.
The holographic dark energy principle expresses that the quantum zero-point energy in the
given volume of space cannot exceed the mass of a black hole of the same size, which,
by definition, acts as a limit on the energy density of the vacuum, which implies that
all information within a volume can be described by its boundary surface. It means the
information content of a region is limited by its size, preventing it from collapsing into a
black hole [21].

In this paper we are going to consider two known models of dark energy and make dark
degeneracy. The first one is a modified generalized Chaplygin gas and the second one is
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the Phantom model. In section 2 we review the dark degeneracy and obtain the explicit
form of the creation rate. By writing the ρm with respect to Γ we show that Γ defines the
rate of dark matter creation. In section 3 we consider the modified generalized Chalygin
gas (MGCG), we calculate the creation rate and adiabatic sound speed. In section 4 we
introduce the Phantom model and splite the corresponding field into components. We write
the Klein-Gordon equation and obtain the potential and H in terms of creation rate. The
Holographic Dark Energy and the creation rates and limitations of holographic principles
are also discussed. In this section, we have some figures for the different models as various
of it H(t). In that case, we draw the rate of dark matter with respect to the field and for the
MGCG and GCCG gases. Different figures completely agree with any data and information
from the literature. Finally, in section five, we have some conclusions and suggestions.

2 Review Dark Degeneracy

As we know in the present letter dark degeneracy is formulated in the following manner.
We assume dark fluid that is following,

ρ = Λ+ ρm, (2.1)

PΛ = −Λ, (2.2)

Pm = ωmρm, (2.3)

where ωm ≥ 0 and Λ > 0. By using (1.1-2.3), we have the following equation,

ρm =
ω + 1

ωm − ω
Λ. (2.4)

In case of −1 ≤ ω < 0 we have ρm ≥ 0 and this component can be interpreted as dark matter.
By using the equations (2.1-2.3) and ωm = 0, the Friedmann and continuity equations will
be as,

ρm + Λ = 3H2, (2.5)

ρ̇m + 3Hρm = −Λ̇, (2.6)

where the dot means derivative with respect to cosmological time. Equation (2.6) expresses
the total energy conservation. In this case, two component may interact together [10–13].
Differentiating (2.5) and using (2.6) we will arrive at,

ρm = −2Ḣ. (2.7)

We put (2.4) in (2.5) in case of ωm = 0, we have following equation,

Λ = −3ωH2. (2.8)

We take derivative Λ with respect to cosmological time in equation (2.8), one can obtain,

Λ̇ = −3ω̇H2 − 6ωḢH. (2.9)

By using equations (2.7), (2.5) and (2.4) in equation (2.9) we drive,

Λ̇ =

(
3ωH − ω̇

ω + 1

)
ρm, (2.10)
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so, equation (2.6) can be rewritten as,

ρ̇m + 3Hρm = Γρm, (2.11)

where Γ is the creation rate will be as,

Γ =
ω̇

ω + 1
− 3ωH. (2.12)

By using ρm = Mn and H = ȧ
a , from equation (2.11), we obtain the following expression,

1

a3
d

dt
(a3n) = Γn, (2.13)

where M , n and a are defined dark matter particle mass, number density and scale factor
respectively. Here, we note the Γ defines the rate of dark matter creation.

3 The Modified Generalized Chaplygin Gas and De-
generacy

In order to discuss the rate of dark matter creation we are going to consider several mod-
els with different H. So, in this case, the equation of state for the modified generalized
Chaplygin gas (MGCG) is given by [14–19].

P = Aρ− B

ρα
, (3.1)

also, the modified generalized Chaplygin gas is characterized by an adiabatic sound speed
[14–19],

cs
2 =

Ṗ

ρ̇
= A(1 + α)− αω, (3.2)

when A = 0, we will obtain the generalized gas sound speed as cs
2 = αω (α is constant). If

we look at the relation (3.2), in order to have the stability of the system one has to consider

A(α + 1) − αω > 0. So the corresponding stability lead us to have A(α+1)
α > ω Hence, by

differentiating P = ωρ as Ṗ = ρ̇ω + ω̇ρ and putṖ in equation (3.2) one can obtain,

ω̇ρ = ρ̇(A− ω)(α+ 1), (3.3)

By using the following conservation equation

ρ̇+ 3H(ρ+ P ) = 0, (3.4)

in expression (3.3) we have following,

ω̇ = 3H(α+ 1)(1 + ω)(ω −A), (3.5)

Now we have to apply the Chaplygin gas equation of state in the equation (2.12) one can
obtain the creation rate as,

Γ = 3Hα(ω −A)− 3HA, (3.6)
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where in generalized Chaplygin gas the creation rate is Γ = 3Hωα. In equation (3.6) the
creation rate is positive if α is negative, so in case of A = 0, we have C2

s = αω The modified
Chaplygin gas equation of state parameter is given by,

ω =
P

ρ
= A− B

ρα+1
, (3.7)

where A and B are positive constant. Since ρ = 3H2, from equation (3.7) one can obtain
following,

ω = A−B
H−2(α+1)

3α+1
, (3.8)

We put equation (3.8) in (3.6) and achieve the following equation,

Γ = −αB
H−(2α+1)

3α
− 3HA, (3.9)

when α < 0 we have energy flux from dark energy to dark matter, since Γ > 0. For α = 0
and A = 0, we arrive at the ΛCDM model with Γ = 0 and C2

s = 0. For α = − 1
2 we have

Γ =
√
3B
2 − 3HA where

H =

√
3B
2 − Γ

3A
. (3.10)

Here from equation (3.9), we see that Γ ∼ 3HdS where HdS is the expansion rate in the
de Sitter limit. This result shows that a universe dominated by matter evolves from an
Einstein-de Sitter phase to an asymptotically de Sitter era.

4 Phantom model and Degeneracy

In the FLRW space-time the energy density and pressure of a minimally coupled scalar field
Φ Phantom model are given by,

ρΦ = −1

2
Φ̇2 + V (Φ)

PΦ = −1

2
Φ̇2 − V (Φ) = −Λ. (4.1)

So, Λ will be as,

Λ =
1

2
Φ̇2 + V (Φ). (4.2)

Now, we are going to use the equation (4.1) in equation (2), one can obtain ρm as,

ρm = −Φ̇2. (4.3)

The equations (4.2), (2.5) and (2.7) help us to arrive at following equation,

3H2 = V (Φ)− 2H ′2, (4.4)

where
Φ̇ = 2H ′, (4.5)

and prime means derivative with respect to Φ. We use (4.1) and (4.2) into the conservation
equation (2.6), we derive the following Klein- Gordon equation,

Φ̈ + 3HΦ̇− V ′(ϕ) = 0. (4.6)
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All the above information for cosmological be general, we shall now consider the special case
of Γ, which is Λ = 2ΓH. From (4.1), (4.2), (4.4) and (4.5) one can obtain following,

V (Φ) =
3

2
H2 + ΓH. (4.7)

We substitute this equation in (4.4) and (4.7) we will arrive at following,

4H ′2 − 2ΓH + 3H2 = 0. (4.8)

So, in that case, one can write the field Φ as,

Φ =

∫
dH√

ΓH
2 − 3

4H
2
. (4.9)

The corresponding Hubble parameter in terms of the field will be as,

H =
Γ

3
(1− cos

√
3

2
Φ). (4.10)

We see in equations (4.7) and (4.10) the potential and H for the corresponding Phantom
model are written in terms of field and creation rate. This result is important to describe
the degeneracy in generalized Chaplygin and Phantom models.

In the following, we take several examples with different scale factors. Using some scale
factors a(t), for GCG we can discuss the time dependence of the creation rate as well as the
evolution on ϕ in a given time. So, in the first example, we take the scale factor as,

a(t) = a0(B + ekt)m, (4.11)

where

H(t) =
mkekt

B + ekt
,

so, the creation rate is,

Γ(ϕ, t) =
3mkekt

(B + ekt)(1− cos
√
3
2 Φ)

.
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Figure 1: The evolution of Γ on ϕ for m = 1.1, k = 0.03, B = 1, t = 5.

Figure 1 shows the evolution of the creation rate Γ as a function of the scalar field ϕ.
The sharp increase in Γ at higher values of ϕ indicates that dark matter creation accelerates
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Figure 2: The evolution of Γ on t for m = 1.1, k = 0.03, B = 1, ϕ = 1.7.

as the scalar field evolves, which may have important consequences for the evolution of the
universe.

In these figures, we took a0 > 0, k > 0, > B > 0, m > 1 and a(t) = a0(B + ekt)m. In
the second example, the scale factor is given by

a(t) = eλt
β

, (4.12)

where
H(t) = λβtβ−1.

So, the creation rate is achieved by the following equation,

Γ(ϕ, t) =
3λβtβ−1

(1− cos
√
3
2 Φ)

.

1.0 1.5 2.0 2.5 3.0

j

5

10

15

G

Figure 3: Evolution of Γ on ϕ for λ = 0.7, β = 0.8, t = 1.

In those cases, we took λ > 0, 0 < β < 1 and a(t) = eλt
β

.
Now we take the third example. In that case, by considering a class of possible cosmological
solutions with indefinite expansion, the scale factor showing the accelerating expansion of
the universe which is given by,

a(t) = ex(ln t)β , (4.13)

where

H(t) =
βx

t
(ln t)β−1,
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Figure 4: Evolution of Γ on t for λ = 0.7, β = 0.8, ϕ = 1.7.

so, the creation rate is

Γ(ϕ, t) =
3βx(ln t)β−1

t(1− cos
√
3
2 Φ)

.
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Figure 5: Evolution of Γ on ϕ for x = 0.5, β = 2, t = 2.
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Figure 6: Evolution of Γ on t for x = 0.5, β = 2, ϕ = 1.7.

In these cases we took x > 0, β > 1 and a(t) = ex(ln t)β . Here we take advantage of
equation (3.2) and investigate the stability of the system for the three models. In order to



The Modified Chaplygin Gas and Dark Degeneracy with Phantom Model 117

discuss the stability of the system one can write the speed of sound, the condition of C2
s ≥ 0

gives us such stability. For this reason, we calculate the C2
s in GCG for the three examples.

And also, we draw the C2
s in terms of t which are shown by figures 7, 8 and 9. Finally, the

information of the paper gives us to work with generalized cosmic Chaplygin gas (GCCG)
and also discuss the stability of the system with three examples. In those cases, we have
figures 10, 11 and 12.
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Figure 7: Square of sound speed in terms of time for H(t) = mkekt

B+ekt whith B = 1.5, α =
0.5and A = 0.5.
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Figure 8: Square of sound speed in terms of time for H(t) = λβtβ−1 whith B = 1.5,
α = 0.5and A = 0.5.

Figures 7 through 12 show the square of the adiabatic sound speed C2
s as a function of

time for different models of the scale factor a(t). These figures show the stability of the
system by analyzing the behavior of the sound speed squared, C2

s , for each model. The
condition C2

s ≥ 0 ensures the stability of the system. A negative sound speed squared would
indicate instability, which is critical for determining the viability of each cosmological model.
By evaluating C2

s , these figures provide a way to test the stability of different dark energy
models under various conditions. Stability is essential for understanding whether these
models can describe a physically realistic universe. The results shown in these figures help
assess whether the equations of state lead to viable cosmologies or if they predict unphysical
behavior.
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Figure 9: Square of sound speed in terms of time for H(t) = βx
t (ln t)β−1 whith B = 1.5,

α = 0.5and A = 0.5.
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Figure 10: Square of sound speed in terms of time for H(t) = mkekt

B+ekt whith B = 1.5,
α = 0.5and ω = 0.5.
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Figure 11: Square of sound speed in terms of time for H(t) = λβtβ−1 whith B = 1.5,
α = 0.5and ω = 0.5.

4.1 The Holographic Dark Energy and the Phantom Field Theory

Using the future event horizon as an infrared (IR) cutoff in holographic dark energy models,
it can be directly related to the behavior of the phantom field, since the resulting dark energy
density can become negative, leading to a rapid expansion of the universe that violates the
standard energy condition, which is an important characteristic of the phantom field. In
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Figure 12: Square of sound speed in terms of time for H(t) = βx
t (ln t)β−1 whith B = 1.5,

α = 0.5and ω = 0.5.

holographic dark energy models, the energy density is related to the IR cutoff, which in this
case is chosen as the future event horizon. This allows us to relate the properties of the
phantom model to holographic principles [22].

The holographic dark energy density, ρD, can be expressed as:

ρD =
3c2m2

p

L2
, (4.14)

where c is a constant, mp is the Planck mass, and L is the IR cutoff. In the context of the
Phantom model, we take the IR cutoff L to be the future event horizon:

L(t) = a(t)r(t), (4.15)

r(t) represents the future event horizon at time t: r(t) = 1
H(t) , here H(t) is the Hubble

parameter at time t.
The relationship between the Hubble parameter and the future event horizon plays an im-
portant role in linking the holographic principles to the creation rate Γ in the phantom
model. We can now write the equation for the creation rate Γ, taking into account the
holographic nature of dark energy:

Γ = 3H(
c2M2

p

r(t)2
− 3

a(t)2
). (4.16)

4.2 Creation rates and limitations of holographic principles

The rate of creation of Γ in holographic dark energy models can be bounded by the holo-
graphic principle, which requires that the energy density be bounded by the degrees of
freedom present at the boundary of the universe. This can impose a relationship between
Γ, H(t), and the future event horizon. The holographic principle states that information
cannot exceed the limits set by the boundary conditions, and therefore we expect that there
is a natural limit to the rate of creation of dark matter, ensuring that it does not exceed the
energy available in the system at any given time [22]. This limit can be expressed as:

Γ ≤
3c2M2

p

r(t)2
. (4.17)

This ensures that the creation rate Γ is consistent with the holographic nature of dark
energy, where the amount of dark energy in the universe should be limited by the IR cut-off.
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5 Conclusion

In this paper, we introduced two models of dark energy and investigated their degeneracy.
The two models considered here were the generalized Chaplygin gas and the Phantom model.
We discussed dark degeneracy, which led us to arrange the creation rate. Additionally, for the
selected models, we calculated the creation rate and the adiabatic sound speed. Finally, we
introduced the Klein-Gordon equation for the Phantom model and obtained the potential
and H in terms of the creation rate, which plays an important role in dark energy. We
extended the Phantom model by relating it to holographic dark energy, where the IR cutoff
is taken as the future event horizon. By considering this relationship, we derived equations
linking the creation rate Γ to the holographic density ρD, which adds a layer of physical
insight into the evolution of dark energy and dark matter.

Our results show that the creation rate plays a crucial role in determining the dynamics of
the universe. Future work could involve testing these models against observational data from
large-scale surveys, such as the upcoming Euclid mission, to determine their compatibility
with the latest cosmological observations.
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