Fast Electric Quenches and Scaling Behavior at Finite Coupling

Document Type : Regular article

Author

School of Physics, Damghan University, Damghan, P.O.Box 36716–41167, Iran

Abstract

We investigate the dynamical response of a gauge theory with a holographic dual at both finite- and infinite-coupling regime to time-dependent electric field quenches of various profiles. Using the AdS/CFT correspondence, we analyze the resulting electric current as a function of the quench profile and system parameters, including temperature and coupling strength. Our study reveals a universal scaling behavior in the early-time response to fast quenches. Specifically, we find that for tanh-like quenches, the rescaled first peak of the current scales as $(1/\delta t)^0$, while for pulse-like quenches, it scales as $(1/\delta t)^{-1}$, where $\delta t$ is the transition time of the electric field. This scaling persists across different theories, including infinite coupling, finite coupling, and finite temperature, demonstrating its independence from the underlying theory and quench details.

Keywords

Main Subjects

 

Article PDF

[1] A. Buchel, L. Lehner, and R. C. Myers, “Thermal quenches in N=2* plasmas”, JHEP 08, 049 (2012). DOI: 10.1007/JHEP08(2012)049
[2] A. Buchel, L. Lehner, R. C. Myers, and A. van Niekrek, “Quantum quenches of holographic plasmas”, JHEP 05, 067 (2013). DOI: 10.1007/JHEP05(2013)067
[3] A. Buchel, R. C. Myers, and A. van Niekrek, “Universality of abrupt holographic quenches”, Phys. Rev. Lett. 111, 201602 (2013). DOI: 10.1103/PhysRevLett.111.201602
[4] S. R. Das, D. A. Galante, and R. C. Myers, “Universal scaling in fast quantum quenches in conformal field theories”, Phys. Rev. Lett. 112, 171601 (2014). DOI: 10.1103/Phys-RevLett.112.171601
[5] J. Maldacena, “The Large N limit of superconformal field theories and supergravity”, Int. J. Theor. Phys. 38, 1113 (1999). DOI: 10.1023/A:1026654312961
[6] S. S. Gubser, I. R. Klebanov, and A. A. Tseytlin, “Coupling constant dependence in the thermodynamics of N = 4 supersymmetric Yang-Mills theory”, Nucl. Phys. B534, 202 (1998). DOI: 10.1016/S0550-3213(98)00514-8
[7] J. Pawetczyk and S. Theisen, “AdS5 × S5 black hole metric at O(α′3)”, JHEP 09, 010 (1998). DOI: 10.1088/1126-6708/1998/09/010
[8] T. Ishii, S. Kinoshita, K. Murata, and N. Tanahashi, “Dynamical meson melting in holography”, JHEP 04, 099 (2014) [arXiv:1401.5106 [hep-th]].
[9] K. Hashimoto, S. Kinoshita, K. Murata, and T. Oka, “Electric field quench in AdS/CFT”, JHEP 09, 126 (2014) [arXiv:1407.0798 [hep-th]].
[10] M. Ali-Akbari, F. Charmchi, A. Davody, H. Ebrahim, and L. Shahkarami, “Timedependent meson melting in external magnetic field”, Phys. Rev. D 91, 106008 (2015) [arXiv:1503.04439 [hep-th]].
[11] J. S. Schwinger, “On gauge invariance and vacuum polarization”, Phys. Rev. 82, 664 (1951).
[12] G. W. Semenoff and K. Zarembo, “Holographic Schwinger effect”, Phys. Rev. Lett. 107, 171601 (2011). DOI: 10.1103/PhysRevLett.107.171601
[13] Y. Sato and K. Yoshida, “Potential analysis in holographic Schwinger effect”, JHEP 08, 002 (2013). DOI: 10.1007/JHEP08(2013)002
[14] Y. Sato and K. Yoshida, “Holographic Schwinger effect in confining phase”, JHEP 09, 134 (2013). DOI: 10.1007/JHEP09(2013)134
[15] J. Sadeghi, B. Pourhassan, S. Tahery, and F. Razavi, “Holographic Schwinger effect with a deformed AdS background”, Int. J. Mod. Phys. A 32, 1750045 (2017). DOI: 10.1142/S0217751X17500452
[16] L. Shahkarami, M. Dehghani, and P. Dehghani, “Holographic Schwinger effect in a D-instanton background”, Phys. Rev. D 97, 046013 (2018). DOI: 10.1103/Phys-RevD.97.046013
[17] L. Shahkarami and F. Charmchi, “Confining D-instanton background in an external electric field”, Eur. Phys. J. C 79, 343 (2019). DOI: 10.1140/epjc/s10052-019-6765-9
[18] Sw. Li, Sk. Luo, and Hq. Li, “Holographic Schwinger effect and electric instability with anisotropy”, JHEP 08, 206 (2022). DOI: 10.1007/JHEP08(2022)206
[19] L. Shahkarami, “Massive N = 2 Supersymmetric Gauge Theory Under Electric Field Quench”, Journal of Holography Applications in Physics 4(1), 71 (2024). DOI: 10.22128/JHAP.2024.792.1069
Volume 5, Issue 1
February 2025
Pages 98-107
  • Receive Date: 17 December 2024
  • Revise Date: 13 January 2025
  • Accept Date: 15 January 2025