[1] A. Buchel, L. Lehner, and R. C. Myers, “Thermal quenches in N=2* plasmas”, JHEP 08, 049 (2012). DOI: 10.1007/JHEP08(2012)049
[2] A. Buchel, L. Lehner, R. C. Myers, and A. van Niekrek, “Quantum quenches of holographic plasmas”, JHEP 05, 067 (2013). DOI: 10.1007/JHEP05(2013)067
[3] A. Buchel, R. C. Myers, and A. van Niekrek, “Universality of abrupt holographic quenches”, Phys. Rev. Lett. 111, 201602 (2013). DOI: 10.1103/PhysRevLett.111.201602
[4] S. R. Das, D. A. Galante, and R. C. Myers, “Universal scaling in fast quantum quenches in conformal field theories”, Phys. Rev. Lett. 112, 171601 (2014). DOI: 10.1103/Phys-RevLett.112.171601
[5] J. Maldacena, “The Large N limit of superconformal field theories and supergravity”, Int. J. Theor. Phys. 38, 1113 (1999). DOI: 10.1023/A:1026654312961
[6] S. S. Gubser, I. R. Klebanov, and A. A. Tseytlin, “Coupling constant dependence in the thermodynamics of N = 4 supersymmetric Yang-Mills theory”, Nucl. Phys. B534, 202 (1998). DOI: 10.1016/S0550-3213(98)00514-8
[7] J. Pawetczyk and S. Theisen, “AdS5 × S5 black hole metric at O(α′3)”, JHEP 09, 010 (1998). DOI: 10.1088/1126-6708/1998/09/010
[8] T. Ishii, S. Kinoshita, K. Murata, and N. Tanahashi, “Dynamical meson melting in holography”, JHEP 04, 099 (2014) [arXiv:1401.5106 [hep-th]].
[9] K. Hashimoto, S. Kinoshita, K. Murata, and T. Oka, “Electric field quench in AdS/CFT”, JHEP 09, 126 (2014) [arXiv:1407.0798 [hep-th]].
[10] M. Ali-Akbari, F. Charmchi, A. Davody, H. Ebrahim, and L. Shahkarami, “Timedependent meson melting in external magnetic field”, Phys. Rev. D 91, 106008 (2015) [arXiv:1503.04439 [hep-th]].
[11] J. S. Schwinger, “On gauge invariance and vacuum polarization”, Phys. Rev. 82, 664 (1951).
[12] G. W. Semenoff and K. Zarembo, “Holographic Schwinger effect”, Phys. Rev. Lett. 107, 171601 (2011). DOI: 10.1103/PhysRevLett.107.171601
[13] Y. Sato and K. Yoshida, “Potential analysis in holographic Schwinger effect”, JHEP 08, 002 (2013). DOI: 10.1007/JHEP08(2013)002
[14] Y. Sato and K. Yoshida, “Holographic Schwinger effect in confining phase”, JHEP 09, 134 (2013). DOI: 10.1007/JHEP09(2013)134
[15] J. Sadeghi, B. Pourhassan, S. Tahery, and F. Razavi, “Holographic Schwinger effect with a deformed AdS background”, Int. J. Mod. Phys. A 32, 1750045 (2017). DOI: 10.1142/S0217751X17500452
[16] L. Shahkarami, M. Dehghani, and P. Dehghani, “Holographic Schwinger effect in a D-instanton background”, Phys. Rev. D 97, 046013 (2018). DOI: 10.1103/Phys-RevD.97.046013
[17] L. Shahkarami and F. Charmchi, “Confining D-instanton background in an external electric field”, Eur. Phys. J. C 79, 343 (2019). DOI: 10.1140/epjc/s10052-019-6765-9
[18] Sw. Li, Sk. Luo, and Hq. Li, “Holographic Schwinger effect and electric instability with anisotropy”, JHEP 08, 206 (2022). DOI: 10.1007/JHEP08(2022)206
[19] L. Shahkarami, “Massive N = 2 Supersymmetric Gauge Theory Under Electric Field Quench”, Journal of Holography Applications in Physics 4(1), 71 (2024). DOI: 10.22128/JHAP.2024.792.1069