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Abstract. We investigate the dynamical response of a gauge theory with a holo-
graphic dual at both finite- and infinite-coupling regimes to time-dependent electric
field quenches of various profiles. Using the AdS/CFT correspondence, we analyze the
resulting electric current as a function of the quench profile and system parameters,
including temperature and coupling strength. Our study reveals a universal scaling
behavior in the early-time response to fast quenches. Specifically, we find that for
tanh-like quenches, the rescaled first peak of the current scales as (1/δt)0, while for
pulse-like quenches, it scales as (1/δt)−1, where δt is the transition time of the electric
field. This scaling persists across different theories, including infinite coupling, finite
coupling, and finite temperature, demonstrating its independence from the underlying
theory and quench details.
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1 Introduction

The study of quantum quenches, which involve deforming a quantum field theory by a time-
dependent change in the coupling of a relevant operator, L → L + λ(t)O, is of significant
interest from both theoretical and experimental perspectives. Despite the extensive research
dedicated to this problem, many questions remain open regarding the out-of-equilibrium
behavior induced by the quenched coupling and the subsequent evolution of the system.
Understanding the dynamics of far-from-equilibrium systems presents a challenging problem
across various areas of physics, particularly in the strong coupling regime. This challenge
underscores the importance of further investigating quantum quenches.

Another important aspect that makes the study of quantum quenches fascinating is the
observation of universal behavior in the system’s response under certain special conditions.
One such universal feature was identified in a series of papers [1–4]. Some of these works
[1–3] explored the response of a strongly coupled holographic conformal field theory to a
deformation induced by a time-dependent coupling to a relevant operator. Specifically, the
coupling λ(t) starts from zero and increases to a finite value δλ over a finite duration, referred
to as the transition time δt. These studies considered bosonic and fermionic mass operators,
examining the transition from a (thermal) conformal field theory to a mass-deformed theory,
as well as the reverse transition from the massive theory back to the conformal theory.

Through these investigations, they discovered a remarkable scaling property for strongly
coupled holographic systems in the limit of fast but smooth quenches. The response of such
systems, i.e., the expectation value of the quenched operator rescaled by δλ, scales as δtd−2∆,
where d is the spacetime dimension and ∆ is the conformal dimension of the operator.

They then extended this study to investigate the scaling behavior of free field theories
using non-holographic considerations [4]. Surprisingly, they found the same scaling property
in the case of scalar and fermionic field theories. This result indicates that the scaling
behavior observed under fast quenches is universal and does not require strong coupling as
a necessary condition.

The scaling property observed in these studies is remarkable because it suggests a univer-
sal response that transcends specific details of the system, such as the nature of the operator
or the dynamics of the underlying theory. This universality is crucial for understanding far-
from-equilibrium phenomena in quantum field theories, as it provides a predictive framework
that applies across diverse systems. Testing this scaling at finite coupling is particularly im-
portant because most physical systems, such as the quark-gluon plasma (QGP) produced
in heavy-ion collisions, exist in regimes where neither weak nor infinitely strong coupling
fully applies. Demonstrating that the scaling persists at finite coupling would strengthen
the case for its universality and deepen our understanding of the dynamics of real-world
strongly coupled systems.

A remarkable approach to studying field theories in the strong coupling limit is the
AdS/CFT correspondence, which relates a strongly coupled theory at infinite ’t Hooft cou-
pling and an infinite number of colors to a weakly coupled supergravity theory [5]. To
explore the regime where the coupling lies between the extremes of infinitely strong and
weak, one can incorporate finite coupling corrections by including additional contributions
of order O(α′3) to the gravity theory [6,7]. Here, α′ is related to the string length.

It is intriguing to investigate whether the aforementioned scaling behavior arises in the
response of holographic theories with finite coupling under fast quenches. To this end, we
examine the response of a holographic model with massless quarks to electric field quenches,
considering both finite and infinite coupling regimes. To introduce an external electric field
on the field theory side, we embed a probe D7-brane with a gauge field into the gravity bulk.
By solving the DBI equation, we analyze the universal properties of the system, focusing in
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particular on the scaling behavior discussed earlier.
In the next section, we introduce the model describing a finite coupling field theory. In

Section 3, we derive the equations of motion from the DBI action of the probe D7-brane
with the gauge field. These equations provide the electric current produced in response
to the quenched electric field. Section 4 presents the results through various graphs and
investigates the presence of universal scaling. Finally, a brief summary and discussion are
provided in Section 5.

2 Gravity background with O(α′3) corrections

Our aim is to examine the response of the following backgrounds to a time-dependent electric
field of different profiles.

The ten-dimensional AdS5 − BH × S5 metric which is an exact solution of type IIB
supergravity, can be expressed as

ds210 =
R2

z2

[
−f(z)dt2 + dx⃗2 +

1

f(z)
dz2

]
+R2dΩ2

5, (2.1)

where R is the radius of AdS5 and S5. The blackening function is f(z) = 1− z4

z4
h
, where z is

the radial coordinate, ranging from z = 0 at the boundary to z = zh at the event horizon.
This metric is dual to the planar limit of the strong coupling SU(Nc) N = 4 SYM theory
at finite temperature, given by T = 1

πzhR2 .

By incorporating O(α′3) corrections to the AdS5 −BH×S5 metric, the modified metric
becomes [6,7]

ds210 =
R2

z2

[
−f(z)K2(z)dt2 + dx⃗2 +

P 2(z)

f(z)
dz2

]
+R2L2(z)dΩ2

5, (2.2)

where

f(z) = 1−
(

z

zh

)4

, K(z) = eγ[a(z)+4b(z)], P (z) = eγ b(z), L(z) = eγ c(z). (2.3)

Here γ = ζ(3)
8 λ− 3

2 , with the ’t Hooft coupling λ ∝ α′− 1
2 . The functions a(z), b(z) and c(z)

represent the corrections to the metric components, defined as

a(z) = −1625

8

(
z

zh

)4

− 175

(
z

zh

)8

+
10005

16

(
z

zh

)12

, (2.4)

b(z) =
325

8

(
z

zh

)4

+
1075

32

(
z

zh

)8

− 4835

32

(
z

zh

)12

, (2.5)

c(z) =
15

32

[
1 +

(
z

zh

)4
](

z

zh

)8

. (2.6)

The dilaton field also receives corrections at order O(γ) expanded as

ϕ(z) = ϕ0(z) + γϕ1(z) +O(γ),

where

ϕ0(z) = − log(gs), (2.7)

ϕ1(z) = −45

8

(
z

zh

)4

− 45

16

(
z

zh

)8

− 45

24

(
z

zh

)12

. (2.8)
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(gsN)
1/2 ∝ α′. Moreover, The corrected temperature, accounting for finite coupling effects,

is given by

T =
1

πzhR2

(
1 +

265

16
γ

)
. (2.9)

As expected, in the limit γ → 0 all relations revert to their forms at infinite ’t Hooft coupling,
consistent with the standard results in AdS/CFT.

2.1 D3/D7 brane configuration

To introduce fundamental quarks into the field theory, we add a D7-brane in the probe limit.
In this approximation, the background geometry remains unchanged by the presence of the
D7-brane, simplifying the analysis.

To implement a time-dependent electric field E(t) in the x direction (one of the spatial
directions in the field theory), we adopt the following ansatz for the gauge field on the brane:

Ax = −
∫ t

E(s)ds+A(t, z). (2.10)

The D7-brane is chosen to span the coordinates (t, x⃗, z,Ω3) while the perpendicular direc-
tions are fixed to θ = 0 and ϕ = 0. This choice is guided by symmetry and the massless
nature of the quarks. For massless quarks, the case we are interested in, the brane em-
bedding is trivial, and the dynamics are determined solely by the gauge field A(t, z). In
contrast, for massive quarks, the brane embedding becomes non-trivial and is described by
a function ϕ(t, z) that must be solved alongside A(t, z) [8–10].

Substituting the gauge field Ax(t, z) and the induced metric into the DBI action, we
obtain

SD7 = −τ7

∫
d8ξ

R2L3(z)

z5

√
z4P 2(z)Ȧx

2
(t, z)−R2f(z)K2(z)P 2(z)− z4f2(z)K2(z)A′

x
2(t, z)

f(z)
,

(2.11)

where the tension of the D7 brane is given by τ7 = 1/[gsα
′4(2π)7] and ξa denote the brane

coordinates. Variation of the action with respect to the gauge field, yields a partial differen-
tial equation, which must be solved subject to appropriate boundary conditions on A(t, z).
These conditions are A(t, z0) = ∂zA(t, z)|z0 = 0 and A(t0, z) = ∂tA(t, z)|t0 = 0, where z0 is
a small cutoff near the boundary and t0 is an initial time before which the electric field is
zero. Then, using the AdS/CFT dictionary, the time-dependent electric current, which is
the response to the applied electric field, is given by j(t) ∝ ∂2

zA(t, z)|z0 .
To investigate the system’s response, we consider four forms of time-dependent electric

fields, referred to as M1, M2, M3 and M4:

E(t) =
E0

2

[
1 + tanh

(
4t

δt

)]
, (2.12)

E(t) = E0


0, t < 0,

cos2
(

πt
2δt +

π
2

)
, 0 ⩽ t ⩽ δt,

1, t > δt,

(2.13)
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E(t) =
E0

cosh2
(
4t
δt

) , (2.14)

E(t) = E0


0, t < 0,

cos2
(

πt
2δt +

π
2

)
, 0 ⩽ t ⩽ 2δt,

0, t > 2δt.

(2.15)

The profiles M1 and M2 are tanh-like, starting from zero and asymptotically reaching a
finite value E0. In contrast, M3 and M4 pulse-like, starting from zero, reaching a peak
value E0 and eventually returning to zero. In these expressions, δt represents the transition
time, characterizing how quickly the electric field evolves from zero to its peak value E0. In
the profiles M2 and M4, the changes in the electric field occur over an exact, finite duration
of time. In both cases, the electric field is turned on precisely at t = 0, reaches its peak value
at t = δt, and remains constant thereafter in M2. In M4, however, the electric field returns
to zero at t = 2δt. By contrast, the general trends in M1 and M3 are similar to M2 and
M4, respectively, but the transitions in these profiles are not confined to an exact duration.
In M1, the electric field starts increasing from zero at asymptotically distant past (t → −∞)
and reaches its final value only at asymptotically distant future (t → +∞). Similarly, in
M3, the electric field returns to zero at t → +∞.

In the next section, we explore the system’s response to these electric field quenches,
focusing on the universal scaling behavior.

3 Universal scaling in various coupling constants

Our aim is to explore the dynamical response of the system to time-dependent electric fields
in Eqs. (2.12-2.15). We specifically focus on searching for a scaling property similar to that
discovered in [1–4]. We are interested in considering the effect of temperature along with
the finite coupling on this scaling. Finding universal behavior in the response of the system
to quenched operators is significant, as it highlights circumstances under which the behavior
of the system is predictable irrespective of details such as the theory and the quench.
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Figure 1: The left and right graphs show the time evolution of the electric current j(t) in response to the
quenches M1 and M2, respectively, both with E0 = 0.005 and δt = 2.

For the field theory we are working with, the application of any minute electric field leads
to an electric current due to the Schwinger effect [11], since this theory is deconfined and the
quarks are massless, and as a consequence, its critical electric field is zero [12–19]. We first
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display the electric current for various parameters of the theory and the electric field quench.
Figure 1 depicts the dynamical evolution of j(t) when quenchesM1 andM2 with parameters
E0 = 0.005 and δt = 2 are turned on. Each figure compares three cases: zero temperature
and infinite coupling, finite temperature and finite coupling, and finite temperature and
infinite coupling. The electric field profile has also been drawn in each case. Notice that
the response is similar in both M1 and M2. Since in M2 the transitions in the electric field
occur over an exact finite duration of time, the oscillations in the response of the system are
more intense, with higher amplitudes, compared to M1, where the evolution of the electric
field follows a smoother trend.

In all these cases, the electric current tends to its corresponding value for a static E = E0

as the system approaches its final steady state. The final fate of the response is independent
of the details of the quench profile and its transition time. Figure 2 shows a similar display
of the response of the system to models M3 and M4. In these cases, the final fate of the
electric current is approaching zero regardless of the system’s and quench’s parameters.

E(t)

λ→∞,T=0

λ=5,T=0.05

λ→∞,T=0.05

-2 0 2 4 6 8 10 12

-0.02

-0.01

0.00

0.01

0.02

t

j(t)

E(t)

λ→∞,T=0

λ=5,T=0.05

λ→∞,T=0.05

-2 0 2 4 6 8 10 12

-0.02

-0.01

0.00

0.01

0.02

t

j(t)

Figure 2: Left and right graphs show the time evolution of the electric current j(t) in response to the
quenches M3 and M4, respectively, both with E0 = 0.005 and δt = 2.

Now, we move to our original goal: searching for universal scaling in the early-time
response of the system. To this end, we compute the value of the first peak of j(t), i.e.,
jmax, rescaled by the maximum value of the electric field E0 as a function of 1/δt for small
values of δt.

The graphical outcomes of this computation are represented in Fig. 3. The left graph
illustrates the results for all four quench models in the finite-coupling background with λ = 5
and T = 0.05. Notice that both axes are logarithmic, although the tick marks indicate the
original values. As can be seen, a scaling behavior is observed for fast enough quenches,
i.e., small δt, consistent with prior studies. The results in this limit are independent of the
exact form of E(t), as they are exactly the same for tanh-like quenches M1 and M2, and
also for pulse-like quenches M3 and M4. Straight lines in log-log plots confirm that jmax/δt
has a power-law dependence on 1/δt at the fast-quench limit. The power is zero and −1
for tanh-like and pulse-like quenches, respectively. Note that by increasing δt, the response
differs for different quench models.

Another important point is that we have similar graphs with exactly the same powers
for all the theories with zero temperature and infinite coupling, finite temperature and finite
coupling, and finite temperature and infinite coupling. Here we have only shown one of these
results. Therefore, this scaling demonstrates that, in the limit of fast quenches, the response
is not sensitive to the theory, its coupling, its temperature, or the exact functionality of the
electric field quench. The only determining factor is whether the electric field eventually
returns to zero (pulse-like quenches) or results in a nonzero electric current in the final
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steady state of the system (tanh-like quenches).
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Figure 3: Left graph: jmax/δt against 1/δt for all four models in the finite-coupling background with λ = 5
and T = 0.05. Right graph: jmax/δt against 1/δt for M1 and M3, and for various backgrounds.

In the right graph of Fig. 3, we show jmax/δt for the quench models M1 and M3 for
zero temperature and infinite coupling, finite temperature and finite coupling, and finite
temperature and infinite coupling. This comparison reveals the existence of the universal
scaling for all three theories. We see that the power is 0 and −1 in all theories, as stated
before. The differences arise only in the slope of the power-law functions.

4 Conclusion

In this paper, we have applied holographic techniques to study the dynamical response of a
gauge theory with a gravity dual to electric field quenches of various profiles. Gauge/gravity
duality provides a powerful framework for studying quantum field theories in the strong
(infinite) coupling regime. It is particularly effective for investigating out-of-equilibrium
phenomena, where other techniques often face significant challenges.

A key motivation for this study is the discovery of universal scaling behaviors in the
response of quantum systems to quenches. Such scaling properties are remarkable because
they reveal predictable behavior in systems that are otherwise highly sensitive to their
specific details, such as coupling strength, temperature, or the precise form of the quench.
Previous studies on fermionic and bosonic mass quenches have demonstrated that, in both
holographic and non-holographic settings, the rescaled first peak of the quenched operator
exhibits a universal scaling in the fast-quench regime. Specifically, this scaling follows the
relation δtd−2∆, where d is the spacetime dimension, and ∆ is the conformal dimension
of the operator. These studies incorporated the backreaction of the quench operator in
the background, providing a comprehensive picture of the scaling behavior. However, these
studies solved the equations perturbatively in the amplitude of the bulk scalar, leaving room
for exploration of non-perturbative approaches and different types of quenches.

In our study, we instead turn on an external, time-dependent electric field while neglect-
ing its backreaction in the background. To achieve this, we introduced the corresponding
gauge field on a D7-brane in the probe limit within a bulk AdS5 × S5 metric. Additionally,
recognizing that most physically interesting systems operate in regimes of intermediate cou-
pling, we extended our analysis to include the O(α′3) corrected AdS5×S5 black hole metric.
This allowed us to investigate whether the observed scaling behavior persists in holographic
theories with finite coupling and at finite temperature.
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We have employed four distinct electric field quench profiles. Two of these quenches
rise from zero to a final finite value and eventually return to zero (pulse-like quenches),
while the other two remain at their maximum value indefinitely after rising from zero (tanh-
like quenches). In the absence of a mass gap, the critical electric field for deconfined field
theories is zero, which means an electric current is immediately induced when the electric
field increases from zero. This is indeed the case for our system, where the current arises
instantly upon activating the electric field.

We have analyzed the system’s response to different quench profiles by plotting the
electric current under various conditions to capture the general behavior. Additionally,
we produced logarithmic plots of the maximum value of the first peak of the current, jmax,
rescaled by the maximum electric field, E0, as a function of the inverse transition time, 1/δt.
For tanh-like quenches, we observed a horizontal straight line, indicating that jmax/E0 is
independent of δt in the fast-quench limit. In contrast, for pulse-like quenches, we found
a straight line with a fixed negative slope, suggesting a power-law dependence. Curve
fitting confirmed that jmax/E0 ∼ (1/δt)0 for tanh-like profiles and jmax/E0 ∼ (1/δt)−1 for
pulse-like quenches. Note that for bosonic and fermionic mass operators, the conformal
mass dimensions are ∆ = d − 2 and ∆ = d − 1, respectively, in d spacetime dimensions,
corresponding to 2 and 3 in d = 4. Consequently, the scaling exponents for these operators
are 0 and 2, respectively. These results were derived for tanh-like quenches. In contrast,
in our study, the quenched operator, coupled to the gauge field, is the current operator,
with ∆ = 3 in d = 4. Our calculations show a scaling exponent of 0 for tanh-like quenches,
differing from the findings of previous studies for an operator of the same mass dimension.
While the specific exponents differ from previous results, the scaling behavior itself aligns
with the earlier studies.

In summary, our results demonstrate that the scaling behavior in the early-time response
of the system to fast quenches persists in the context of electric field quenches, even in the
fully non-perturbative regime and without backreaction on the background. Moreover, this
universality holds for both finite and infinite coupling cases.

The inconsistency of the scaling exponents found in our case with previous results
prompts curiosity about whether other scenarios should be explored to gain a deeper under-
standing of the nature of this universality. Scaling exponents serve as measurable signatures
that can validate theoretical predictions. From an experimental perspective, such as in
heavy-ion collisions, the complexity of quark-gluon plasma (QGP) dynamics can be simpli-
fied by focusing on universal properties, which are more accessible to identify and analyze.

For future research, it would be intriguing to investigate the response of holographic
theories incorporating confinement and/or a mass gap. This exploration could reveal the
existence and characteristics of similar scaling behaviors in these more realistic setups, par-
ticularly near the critical point of the system. Such studies hold significant value as they
better reflect the strongly coupled theories like QCD, potentially bridging the gap between
theoretical models and experimental observations.
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