Microscopic Analysis of Nuclear Structure and Thermal Behavior in the Superheavy Region

Document Type : Regular article

Authors

Department of Nuclear Physics, Faculty of Basic Science, University of Mazandaran, P.O.Box 47415–416, Babolsar, Iran

Abstract

Level density and thermodynamic quantities of 250Cm96 and 287Mc115 super-heavy isotopes are calculated based on time dependent pairing energy bach shifted Fermi gas model T DP − BF GM. Woods-Saxon potential is considered for interaction of nucleons inside the nucleus. A temperature dependent pairing energy is also considered. In order to calculate level density and thermodynamic quantities like temperature, entropy and heat capacity of 250Cm96 and 287Mc115 super-heavy isotopes, the level density of theses nuclei are calculated by considering the effects of nuclear rotation and vibration. Variation of level density, entropy, temperature and heat capacity as a function of excitation energy for under consideration isotopes are compared by considering the effects of rotation and vibration. Obtained results on variation of heat capacity as a function of excitation energy indicate well the Cooper pair breaking and cooling effects of these super-heavy isotopes. The novelty of this work is the discontinuity in the specific heat at constant volume for these super-heavy isotopes that are happen in the excitation energies around 2.5 MeV for 250Cm96 and 1MeV for 287Mc115 super-heavy isotopes, which indicates a phase transition from the superfluid state to normal matter.

Keywords

Main Subjects

 

Article PDF

[1] H. A. Bethe, “An attempt to Calculate the Number of Energy Levels of a Heavy Nucleus”, Phys. Rev. 50, 332 (1936). DOI: https://doi.org/10.1103/PhysRev.50.332
[2] H. A. Bethe, “Nuclear Physics B. Nuclear Dynamics, Theoretical”, Rev. Mod. Phys. 9, 69 (1937). DOI: https://doi.org/10.1103/RevModPhys.9.69.
[3] R. B. Firestone and V. S. Shirley, “Table of Isotopes, 8th edition, Vol. II”, New York: John Wiley and Sons, Inc., 1996. ISBN 963-7775-55-2.
[4] A. S. Iljinov, M. V. Mebel, N. Bianchi, E. De Sanctis, and et al., “Phenomenological statistical analysis of level densities, decay widths and lifetimes of excited nuclei”, Nucl. Phys. A 543, 517 (1992). DOI: https://doi.org/10.1016/0375-9474(92)90278-R
[5] A. Schiller, L. Bergholt, M. Guttormsen, E. Melby, J. Rekstad, and S. Siem, “Extraction of level density and γ strength function from primary γ spectra”, Nucl. Instrum. Methods Phys. Res. A 447, 498 (2000). DOI : https://doi.org/10.1016/S0168-9002(99)01187- 0
[6] W. Hauser and H. Feshbach, “The Inelastic Scattering of Neutrons”, Phys. Rev. 87, 336 (1952). DOI: https://doi.org/10.1103/PhysRev.87.366
[7] Thomas Rauscher, Friedrich-Karl Thielemann, and Karl-Ludwig Kratz, “Nuclear level density and the determination of thermonuclear rates for astrophysics”, Phys. Rev. C 56, 1613 (1997). DOI: https://doi.org/10.1103/PhysRevC.56.1613.
[8] G. M. Gurevich, L. E. Lazareva, V. M. Mazur, S. Yu Merkulov, and et al., “Total nuclear photoabsorption cross sections in the region 150 < A < 190”, Nucl. Phys. A 351, 257 (1981). DOI : 10.1016/0375-9474(81)90443-7
[9] M. Igashira, H. Kitazawa, M. Shimizu, H. Komano, and N. Yamamuro, “Systematics of the pygmy resonance in keV neutron capture γ-ray spectra of nuclei with N 82126”, Nucl. Phys. A 457, 301 (1986). DOI : https://doi.org/10.1016/0375-9474(86)90380-5
[10] F. Becv́ár, P. Cejnar, J. Honzátko, R. E. Chrien, and J. Kopecky, “Test of photon strength functions by a method of two-step cascades”, Phys. Rev. C 46, 1276 (1992). DOI: 10.1103/PhysRevC.46.1276.
[11] A. Bohr and B. R. Mottelson, Nuclear structure, (World Scientific 1998), Vol. 1.
[12] Till Von Egidy and Dorel Burners, “Systematics of nuclear level density parameters”, Phys. Rev. C 72, 044311 (2005). DOI: https://doi.org/10.1103/PhysRevC.72.044311.
[13] A. J. Koning, S. Helaire, and S. Goriely, “Global and local level density models”, Nucl. Phys. A 810, 13 (2008). DOI : https://doi.org/10.1016/j.nuclphysa.2008.06.005
[14] A. Gilbert and A. G. W. Cameron, “A composite nuclear-level density formula with shell corrections”, Can. J. Phys. 43, 1446 (1965). DOI: 10.1139/p65-139.
[15] Vladimir Zelevinsky, Sofia Karampagia, and Alexander Berlaga, “Constant temperature model for nuclear level density”, Phys. Lett. B 783, 428 (2018). DOI: https://doi.org/10.1016/j.physletb.2018.07.023.
[16] S. E. Koonin, D. J. Dean, and L. Anganke, “Shell model Monte Carlo methods”, Phys. Rep. 278, 1 (1997). DOI: https://doi.org/10.1016/S0370-1573(96)00017-8.
[17] Y. Alhassid, G. F. Bertsch, and L. Fang, “Nuclear level statistics: Extending shell model theory to higher temperatures”, Phys. Rev. C 68, 044322 (2003). DOI: https://doi.org/10.1103/PhysRevC.68.044322
[18] L. G. Moretto, “Statistical description of a paired nucleus with the inclusion of angular momentum”, Nucl. Phys. A 185, 145 (1972). DOI: https://doi.org/10.1016/0375- 9474(72)90556-8.
Volume 4, Issue 4
December 2024
Pages 71-84
  • Receive Date: 21 November 2024
  • Revise Date: 07 December 2024
  • Accept Date: 07 December 2024