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Abstract. Level density and thermodynamic quantities of 250Cm96 and 260Fm100

super-heavy isotopes are calculated based on time dependent pairing energy bach
shifted Fermi gas model TDP −BFGM . Woods-Saxon potential is considered for the
interaction of nucleons inside the nucleus. A temperature dependent pairing energy
is also considered. In order to calculate level density and thermodynamic quantities
like temperature, entropy and heat capacity of 250Cm96 and 260Fm100 super-heavy
isotopes, the level density of these nuclei are calculated by considering the effects of
nuclear rotation and vibration. Variation of level density, entropy, temperature and
heat capacity as a function of excitation energy for under consideration isotopes are
compared by considering the effects of rotation and vibration. Obtained results on
variation of heat capacity as a function of excitation energy indicate well the Cooper
pair breaking and cooling effects of these super-heavy isotopes. The novelty of this
work is the discontinuity in the specific heat at constant volume for these supe-rheavy
isotopes that are happen in the excitation energies around 3 MeV for 250Cm96 and
2.97MeV for 260Fm100 super-heavy isotopes, which indicates a phase transition from
the superfluid state to normal matter.
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1 Introduction
Undoubtedly, one of the old and active titles of nuclear physics is nuclear level density and
thermodynamic properties of nuclei. The first theoretical effort to explain the nuclear level
density was performed by Bethe in 1936 [1]. In analogy with the classical thermodynamic, he
defined thermodynamic quantities of nuclei like temperature, entropy and heat capacity and
showed that these quantities are closely related to the nuclear level density. Bethe arranged
some experiments to investigate the dependence of nuclear reaction rate on the nuclear
level density [2]. Experimentally speaking, the measured data on nuclear level density has
been collected in energy region close to nuclear ground levels or Fermi energy [3] and from
neutron resonance spacing data [4]. A new method to extract level density and γ-ray strength
function from primary γ-ray spectra has been reported by Oslo experimental group [5]. One
of the most important applications of nuclear level density is produced in calculations of
nuclear reaction cross sections especially in Hauser-Feshbach method [6] which is used in
calculation of stellar evolution like supernovae, neutron stars and destruction of compact
binary stars [7]. The reaction cross section can also be used to estimate the efficiency of
accelerator-driven conversion of nuclear waste. The total radiative strength function can be
measured by absorption methods [8]. At energies below the neutron separation energy it can
be estimated from radiative neutron capture, usually assuming a model for the nuclear level
density. These experiments involve either the total γ-ray spectrum [9] or two-step cascades
[10].

Different methods such as the Fermi gas (FGM) model [11], the back-shifted Fermi
gas (BFGM) model [12,13], the constant temperature (CT ) model [14,15], the shell model
Monte Carlo approach (SMMC) [16,17], the Bardeen Cooper Schrieffer (BCS) model [18,
19],the static path plus random phase approximation (SPA+RPA)algorithm [20,21] and the
generalized superfluid model (GSM) [22–25] have been developed to calculate nuclear level
density parameter. Among these models, the BFGM approach is commonly used for direct
evaluation of the nuclear level density. This method contains two adjustable parameters
including the back shift energy, E1, and the single-particle level density parameter a. Using
the basic relation of the single-particle level density parameter, as a function of single particle
level density at Fermi energy which can be calculated, the BFGM can be parameterized only
with one adjustable parameter, E1. The single-particle level density can also be obtained
through the semiclassical method [26–28] using a proper nuclear mean field potential [29,30].

Thermal properties of nuclei based on experimental and theoretical nuclear level density
contain valuable information about phase transitions and cooper pair breaking in nuclei
[31–33].

Different applications of nuclear physics, such as nuclear energy generation which depends
on fission and fusion reactor design, require accurate knowledge of nuclear reaction rates
that are related sensitively to the thermal properties of nuclei. Simulations of astrophysical
processes and formation of neutron-reach isotopes that happen in distant galaxies and stars
thus require theoretical information about the thermodynamic behavior of nuclear reactions,
because some of such reactions did not happen on earth. Efforts to produce highly neutron-
rich super-heavy isotopes using rare-isotope accelerator facilities are being happening all
over the world. Based on the Fermi gas model of the nucleus,Bethe showed that ρ(Ex) ∝
exp(2

√
aEx). Ex is the excitation energy. It should be noted that the single-particle level

density is evaluated in energies close to the Fermi level. The quantity a is now commonly
referred to as the level density parameter. Since then, many reformulations have been done
to incorporate realistic single-particle energy spectra for nuclei based on the shell model,
like pairing and correlation effects, so that detailed comparisons with the experimental data
can be performed.
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The atomic nucleus is a complex many-body quantum mechanical system. A complete
description of the nuclear structure requires a solution of the Schrödinger equation with a
suitable mean field potential in order to obtain nuclear wave functions and nuclear energy
levels. Although the strong nuclear interaction is not known well, we still need nuclear
models that describe the fundamental properties of the nucleus. The mean field shell model
[34] and its extended versions for deformed nuclei and models based on many-body theory
[35] are two important groups for extracting single-particle energy levels and wave functions
of nucleons inside the nucleus, and studying the collective behaviors of nuclei.

The thermodynamic quantities calculated in this work, particularly the entropy-temperature
relationships and phase transitions observed in super-heavy nuclei, may provide valuable
benchmarks for testing holographic models of nuclear matter. The AdS/CFT correspon-
dence suggests that strongly coupled quantum systems can be described by classical gravity
in higher dimensions. Our results on nuclear level densities and thermal properties could
serve as experimental endpoints for validating such holographic descriptions of nuclear struc-
ture.

For light nuclei that are small enough, by solving the Schrödinger differential equation
with suitable boundary condition, its energy levels can be determined. But for heavy nu-
clei with high mass number, it is not possible to solve the resultant differential equation.
Therefore, statistical microscopic methods combined with spectral explanation and numer-
ical approximations are required to extract the level density.

In order to avoid the complexity of the nuclear level density problem, based on the FG
model, some assumptions were used that are not compatible with reality. In other words,
effects such as coupling, pairing, shell effect, etc. were not taken into account, actually
considering these effects are necessary to accurately determine the nuclear level density.
But to account for these interactions the interacting fermions model with BCS potential
for pairing effect or the semi-empirical relations of BSFGM is used. The models that deal
with the pairing energy, require temperature dependence.

In addition to calculating the reaction cross-section, the nuclear level density can also
be used for calculating the thermodynamic quantities of nuclei. In other words, nuclear
thermodynamic quantities such as entropy, nuclear temperature and heat capacity can be
evaluated using the nuclear level density. Also, the breaking of the first nucleon pair can
be seen by calculating the nuclear level density and nuclear heat capacity. The macroscopic
GSM [36] constructed based on the behavior of a superfluid at low energy which shows the
nuclear phase transition or pair breaking well.

The paper is continued as follows: Theoretical model to calculate the level density and
thermodynamic quantities has been presented in Sec. 2. The obtained results have been
presented and discussed in Sec. 3. Finally, a brief summary and conclusion are presented in
Sec. 4.

2 Theoretical method for calculating thermodynamic prop-
erties

The formula of the level density in the BFGM model with an adjustable parameter, E1 is
expressed as follows [28]:

ρ(U)BFGM =
1

12
√
2σ

exp(2
√
aU)

a
1
4U

5
4

, (1)

where the effective excitation energy U by considering shell effect, Eshell(T ) and temperature
dependent pairing energy, △(T ) is defined by the following relation
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U = E(T )−△(T )− Eshell(T )− E1. (2)
E(T ), a and E1 are respectively, the excitation energy, the level density parameter and the
back shift energy. The spin cut-off factor, σ is defined as follows

σ2 = 0.0146A
5
3
1 +

√
1 + 4aU

2a
. (3)

Temperature dependent shell effects energy can be calculated using the following equa-
tion:

Eshell(E) = MExp −MLDM , (4)
MExp is the measured value of nuclear mass [38]. MLDM is the nuclear mass in the LDM
that is calculated using

MLDM = MnN +MpP + Ev + ES + EC +△(T ). (5)

Where MN , MP , Ev, Es, EC , and △(T ) are neutron mass, proton mass, volume energy, sur-
face energy, Coulomb energy and pairing energy, respectively. The pairing energy transitions
observed here might have corresponding dual descriptions in terms of geometric transitions
in the bulk. These energies are defined by the following equation

Ev = −C1A,

Es = C2A
2
3 ,

EC = C3
Z2

A
1
3

− C4
Z2

A
. (6)

With

Ci = bi

[
1− k

(
N − Z

A

)2
]
, (i = 1, 2). (7)

Also, b1 = 15.677MeV , b2 = 18.56MeV , k = 1.79, C3 = 0.717 and C4 = 1.21129.
The protons and neutrons pairing energy can be calculated using the following equation

[39–41].

△(0) =


△n(0) +△p(0), forZ even andN even,
△p(0), forZ even andN odd,
△n(0), forZ odd andN even,
0, forZ odd andN odd,

where △n(0) and △p(0) are defined as follows

△n(0) =
r

N
1
3

exp

[
−s

(
N − Z

A

)
− t

(
N − Z

A

)2
]

△p(0) =
r

Z
1
3

exp

[
s

(
N − Z

A

)
− t

(
N − Z

A

)2
]
, (8)

where, r = 5.72, s = 0.118 and t = 8.12 are considered in the calculation. Also, △(T ) is
related to △(0) by the following relation [42],

△(T ) =
△(0)

1 + exp( T
0.03 − 7.37

0.03
√
A
)
. (9)
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Then by using the formula of BSFG for ρ(E), one obtains

1

T
=

dS

dE
=

d ln ρ

dE
=

(√
a

U
− 3

4U

)
dU

dE
, (10)

where S and U are entropy and effective excitation energy, respectively. Then by differen-
tiating U as a function of excitation energy E, one obtains

dU

dE
= 1− d△(T )

dE
− dEshell(T )

dE
= 1−

(
d△(T )

dT
+

dEshell(T )

dT

)
dT

dE
. (11)

Substituting eq. (11) into eq. (10) yields

1

T
=

(√
a

U
− 3

4U

)[
1−

(
d△(T )

dT
+

dEshell(T )

dT

)]
dT

dE
, (12)

In the simple FG model, the excitation energy versus the temperature is defined by

E(T ) = aT 2. (13)

To consider the energy dependence of pairing energy and shell effects, it is customary to
consider the excitation energy, E(T ) as a polynomial series of the temperature. Here, a
complete set of power series up to a third power for excitation energy as a function of
temperature is considered,

E(T ) = a0 + a1T + a2T
2 + a3T

3. (14)

Then coefficients a0, . . . , a3 are obtained by the substitution of E(T ) from eq. (14) into
eq. (12) in each small interval of temperature. The mass number dependent level density
parameter a(U,A)is relate with the BSFGM asymptotic level density parameter, ǎ as,

a(U,A) = ǎ

[
1 +

1− exp(−γU)

U
Eshell(T )

]
, (15)

with
γ =

0.35

A
1
3

(MeV )−1. (16)

The asymptotic level density parameter, ǎ is calculated using [28,43,44]

ǎ =
π2

6
g, (17)

with
g = gn(ϵ

n
F ) + gn(ϵ

p
F ). (18)

Where gn(ϵ
n
F ) and gn(ϵ

p
F ) are, respectively, the single-particle level density of neutron and

proton in Fermi energy. The level density parameter, a can also be obtained using through
fitting with the experimental data or the semi-classical formulas. The calculated level density
parameters and thermodynamic quantities could serve as boundary conditions or verification
points for holographic models. The single particle level density, g(ϵ) is evaluated by the
following relation,

g(ϵ) =
2

π

(
2m

ℏ2

) 3
2
∫

drr2
√
ϵ− V (r)θ(ϵ− V (r)), (19)
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where m and ε are the average mass of nucleons ( neutron and proton) and single-particle en-
ergy levels of nucleons inside the nucleus, respectively. θ(X) is the well known step function.
V (r) is the effective potential that includes nuclear and Coulomb potentials for protons and
is equal to nuclear potential for neutrons. Here, Woods-Saxon potential(VWS(r)) is con-
sidered for interaction of nucleons inside the nucleus. The VWS(r) potential for axially
symmetric deformed isotope is defined as follows [30,45]

VWS(r, θ) =
V0

1 + exp( r−R(θ)
ds

)
. (20)

Where R, ds are nuclear radius and diffuseness parameters, respectively that are defined as
follows:

R(θ) = 1.17 + [1 + β2Y20(θ)]Rh,

Rh = (1 + 0.39I)A
1
3 ,

ds = 0.50 + 0.33I,

I =
N − Z

A
. (21)

V0 is the dept of nuclear Woods-Saxon potential that is obtained using the following relation
[46],

V0 = −49.6

[
1± 0.86(

N − Z

A
)

]
(MeV ), (22)

where the + and − signs are used for protons and neutrons, respectively. The Coulomb
potential of positively charged protons for axially symmetric isotope is expressed as follows:

VC(r, θ) =
1

4πϵ0
(
Ze2

r
)

[
1 + (

3R2
C

5r2
)β2Y20(θ)

]
, (23)

where Z and β2 are the atomic number and the quadrupole deformation parameter of isotope,
respectively. Following semi-empirical relation [47], is employed to calculate the nuclear
charge radius, RC

RC = rA

[
1− b(

N − Z

A
) +

c

A

]
A

1
3 , (24)

with rA = 1.235, b = 0.177 and c = 1.960. The integral of eq. (19) can not be solved analyt-
ically for Woods-Saxon plus Coulomb potential for protons and Woods-Saxon potential for
neutrons. Therefore, this integral has been solved numerically to obtain the single-particle
level densities of protons and neutrons as a functions of their single-particle energy levels.
The effect of Vibrational motion of isotope on the nuclear level density, KV ib is considered
by the following relation [48–50]

KV ib = exp(0.0555A
2
3T

4
3 ), (25)

and the effect of rotational motion of the axially symmetric deformed isotope can be obtained
using [13,37]

Krot = 0.01389A
5
3

√
U

a
(1 +

β2

3
). (26)

Finally, by considering the effects of rotational and vibrational motion, the total level density
of axially symmetric deformed isotopes is obtained as follows:

ρtotal(U) = exp(0.0555A
2
3 (

u

a
)

2
3 )× 0.01389A

5
3

√
U

a
× (1 +

β2

3
)× 1

12
√
2σ

exp(2
√
aU)

a
1
4U

5
4

(27)
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This formula is used to calculate level density of axially symmetric deformed 250Cm96 and
260Fm100 superheavy isotopes based on BSFGM by considering temperature dependent
pairing energy and shell effects as well as the effects of rotational and vibrational motions.
The entropy of the nucleus can be computed as follows:

S = KB ln(
ρ

ρ0
), (28)

where ρ0 is the normalization constant which has been obtained using the third law of
thermodynamics. The nuclear temperature is related to nuclear entropy by the following
equation,

T =

(
∂S

∂E

)−1

, (29)

and finally, the heat capacity is calculated using the following formula,

Cv =

(
∂T

∂E

)−1

. (30)

3 Results and discussion
The presented method is applied to calculate asymptotic level density parameter, ǎ single
particle pairing energy, △0 shell effects energy Eshell, quadrupol deformation parameter,
β2 [38,51] and back shift parameter, E1(MeV ) for 250Cm96 and 260Fm100 super-heavy iso-
topes. These parameters are presented in Table 1. As it is clear from this table, there
is a considerable difference between the single particle level density parameter of 250Cm96

even-even super-heavy isotope and 260Fm100 heavier odd-even super-heavy isotopes. The
calculated level densities using parameters of Table 1, by considering effects of vibrational
and rotational motion of axially symmetric deformed isotopes as a function of excitation
energy for 250Cm96 and 260Fm100 isotopes are compared with TDP − BFGM results in
figure 1 (a) and (b), respectively. The total nuclear level density by considering the effects
of vibrational and rotational motion are compared for two under consideration isotopes in
figure 1 (c). This figure indicates that the mode of variation of level density as a function
of excitation energy by considering the effects of vibrational and rotational motion is more
than the TDP − BFGM results although the level density by considering the effects of
vibrational and rotational motion is higher for heavier isotope. Calculated entropy consid-
ering the effects of vibrational and rotational motion for 250Cm96 and 260Fm100 isotopes as
a function of excited energy are compared with the TDP − BFGM results in figure 2 (a)
and (b), respectively. The calculated entropy for these isotopes by considering the effects
of vibrational and rotational motion are compared in figure 2 (c). As it is obvious from
this figure, considering the effects of vibrational and rotational motion caused to increase
the nuclear entropy while the method of variation of entropy as a function of excitation
energy remains the same. Figure 2 (c) shows that there is a small difference between total
entropy of these isotopes in lower energies while the difference increases in higher energies.
Also, the entropy of 260Fm100 isotope is more than 250Cm96 isotope while the mode of
variation is approximation same. In figure 3 (a) and (b) the variation of nuclear temper-
ature by considering the effects of vibrational and rotational motion versus the excitation
energy for 250Cm96 and 260Fm100 super-heavy isotopes are compared with the results of
the TDP − BFGM , respectively. This figure indicates that unlike to the nuclear level
density and entropy, considering the effects of vibrational and rotational motions, cause to
decrease the nuclear temperature compared to TDP −BFGM . Also, as indicated in figure
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3c, in lower energies the temperature of 250Cm96 is more than 260Fm100 super-heavy isotope
while in higher energies ( E > 12MeV the temperature of heavier isotopes goes higher than
lighter one. The heat capacity as a function of excited energy has been shown in figure 4 for
mentioned above isotopes. This figure obviously indicates the first nucleons pair breaking at
3 MeV and 2.97MeV for 250Cm96 and 260Fm100 super-heavy isotopes, respectively. One
may see from Table 1 that these energies are approximately equal to 2△0 for each isotope as
expected. Unfortunately, the measurements have not been done yet to use for comparison.

4 Conclusion

This paper is dedicated to the study of level density and thermodynamic properties of
250Cm96 and 260Fm100 axially symmetric deformed super-heavy isotopes. In order to ob-
tain level density, it was necessary to calculate single particle parameters of these isotopes.
Woods-saxon plus coulomb potentials are considered for interaction of protons while only
Woods-Saxon potential is used to obtain single-particle asymptotic level density parameter,ǎ.
The single-particle level density parameter is used to calculate level density and thermody-
namic quantities based on the semi-classical TDP − BFGM considering time dependent
pairing energy and shell effects. Calculated results are presented in four figures. Parts (a)
and (b) of these figures indicate that the additive behavior of the nuclear level density and
entropy by including the effects of vibrational and rotational motion and decreasing of the
nuclear temperature and heat capacity. Also illegal behavior of the nuclear temperature
in energies around 3MeV for 250Cm96 and about E = 2.97MeV for 260Fm100 super-heavy
isotopes may reflect the phase transition or first cooper pair breaking. Moreover, figure 4 ob-
viously indicate the first nucleons pair breaking that have been happened at 3 MeV, and 2.97
MeV for 250Cm96 and 260Fm100 isotopes, respectively. These results provide important em-
pirical constraints for emerging theoretical frameworks, including holographic approaches
to nuclear structure. The clear signatures of phase transitions and thermal behavior we
observed in these super-heavy systems could serve as valuable test cases for validating holo-
graphic models of nuclear matter, where bulk geometric properties should reproduce the
observed thermodynamic behavior through the AdS/CFT correspondence. Due to the lack
of experimental data, it was not possible to compare our results with the experimental data
but we hope that such results can be a guiding light for future scientists to synthesize new
superheavy elements.

Table 1: Single particle and back shifted parameters, ǎ, △(0), Eshell, β2 and E1(MeV )
obtained for axially symmetric 250Cm96 and 260Fm100 super-heavy isotopes.

Isotope ǎ △(0) Eshell β2 E1(MeV )
250Cm96 23.93 1.5 0.464 0.250 0.919
260Fm100 25.15 1.487 0.617 0.230 0.475
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Figure 1: Variation of the calculated nuclear level density considering the effects of rota-
tional and vibrational motion as a function of excited energy compared with the results of
TDP − BFGM (a) for 250Cm96 and (b) for 260Fm100 super-heavy isotopes. In figure (c)
the calculated level density considering the effects of rotational and vibrational motion for
250Cm96 and 260Fm100 super-heavy isotopes are compared.

Figure 2: Variation of the calculated nuclear entropy considering the effects of rotational
and vibrational motion as a function of excited energy compared with the results of TDP −
BFGM (a) for 250Cm96 and (b) for 260Fm100 super-heavy isotopes. In (c) the calculated
nuclear entropy considering the effects of rotational and vibrational motion for 250Cm96 and
260Fm100 super-heavy isotopes are compared.
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Figure 3: Variation of the calculated nuclear temperature considering the effects of rotational
and vibrational motion as a function of excited energy compared with the results of TDP −
BFGM (a) for 250Cm96 and (b) for 260Fm100 super-heavy isotopes. In (c) the calculated
nuclear temperature considering the effects of rotational and vibrational motion for 250Cm96

and 260Fm100 super-heavy isotopes are compared.

Figure 4: Variation of the calculated nuclear heat capacity considering the effects of ro-
tational and vibrational motion as a function of excited energy compared with the results
of TDP − BFGM (a) for 250Cm96 and (b) for 260Fm100 super-heavy isotopes. In (c) the
calculated nuclear heat capacity considering the effects of rotational and vibrational motion
for 250Cm96 and 260Fm100 super-heavy isotopes are compared.
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