Topology of Holographic Thermodynamics within Non-extensive Entropy

Document Type : Letter

Author

Department of Physics, Faculty of Basic Sciences, University of Mazandaran P. O. Box 47416-95447, Babolsar, Iran.

Abstract

In this paper, we delve into the thermodynamic topology of AdS Reissner-Nordström (R-N) black holes by employing nonextensive entropy frameworks, specifically Rényi (with nonextensive parameter $\lambda$) and Sharma-Mittal entropy (with nonextensive parameter $\alpha, \beta$). Our investigation spans two frameworks: bulk boundary and restricted phase space (RPS) thermodynamics. In the bulk boundary framework, we face singular zero points revealing topological charges influenced by the free parameter $(\lambda)$ with a positive topological charge $(\omega = +1)$ and the total topological charge $(W = +1)$, indicating the presence of a single stable on-shell black hole. Further analysis shows that when $(\lambda)$ is set to zero, the equations align with the Bekenstein-Hawking entropy structure, demonstrating different behaviors with multiple topological charges $(\omega = +1, -1, +1)$. Notably, increasing the parameter $\alpha$ in Sharma-Mittal entropy results in multiple topological charges $(\omega = +1, -1, +1)$ with the total topological charge $(W = +1)$. Conversely, increasing $(\beta)$ reduces the number of topological charges, maintaining the total topological charge $(W = +1)$. Extending our study to the restricted phase space, we observe consistent topological charges $(\omega = +1)$ across all conditions and parameters. This consistency persists even when reducing to Bekenstein-Hawking entropy, suggesting similar behaviors in both non-extended and Hawking entropy states within RPS.

Keywords

Main Subjects

 

Article PDF

 [1] Sh-W. Wei, Yu-Xi. Liu, and R. B. Mann, “Black hole solutions as topological thermodynamic defects”, Physical Review Letters 129.19, 191101 (2022). DOI: 10.1103/PhysRevLett.129.191101
[2] Sh-W. Wei and Yu-Xi. Liu, “Topology of black hole thermodynamics”, Physical Review D 105.10, 104003 (2022). DOI: 10.1103/PhysRevD.105.104003
[3] B. Ning-Chen, L. Li, and J. Tao, “Topology of black hole thermodynamics in Lovelock gravity”, Physical Review D 107.6, 064015 (2023). DOI: 10.1103/PhysRevD.107.064015
[4] P. K. Yerra and Ch. Bhamidipati, “Topology of Born-Infeld AdS black holes in 4D novel Einstein-Gauss-Bonnet gravity”, Physics Letters B 835, 137591 (2022). DOI: 10.1016/j.physletb.2022.137591
[5] J. Sadeghi, et al., “Bardeen black hole thermodynamics from topological perspective”, Annals of Physics 455, 169391 (2023). DOI: 10.1016/j.aop.2023.169391
[6] D. Wu, “Topological classes of thermodynamics of the four-dimensional static accelerating black holes”, Physical Review D 108.8, 084041 (2023). DOI: 10.1103/PhysRevD.108.084041
[7] D. Wu and Sh-Q. Wu, “Topological classes of thermodynamics of rotating AdS black holes”, Physical Review D 107.8, 084002 (2023). DOI: 10.1103/PhysRevD.107.084002
[8] J. Sadeghi, et al., “Thermodynamic topology of black holes from bulk-boundary, extended, and restricted phase space perspectives”, Annals of Physics 460, 169569 (2024). DOI: 10.1016/j.aop.2023.169569
[9] D. Wu, et al., “Topological classes of thermodynamics of the static multi-charge AdS black holes in gauged supergravities”, (2024). [arXiv:2402.00106]
[10] Y. Sekhmani, et al., “Thermodynamic topology of Black Holes in F(R)-EulerHeisenberg gravity’s Rainbow”, (2024). [arXiv:2409.04997]
[11] Sh. Nojiri, S. D. Odintsov, and V. Faraoni, “From nonextensive statistics and black hole entropy to the holographic dark universe”, Physical Review D 105.4, 044042 (2022). DOI: 10.1103/PhysRevD.105.044042
[12] Sh. Nojiri, S. D. Odintsov, and T. Paul, “Early and late universe holographic cosmology from a new generalized entropy”, Physics Letters B 831, 137189 (2022). DOI: 10.1016/j.physletb.2022.137189
[13] Sh. Nojiri and S. D. Odintsov, “Micro-canonical and canonical description for generalised entropy”, Physics Letters B 845, 138130 (2023). DOI: 10.1016/j.physletb.2023.138130
[14] Y. Ladghami and T. Ouali, “Black holes thermodynamics with CFT re-scaling”, Physics of the Dark Universe 44, 101471 (2024). DOI: 10.1016/j.dark.2024.101471
[15] A. Baruah and P. Phukon, “Holographic CFT thermodynamics of charged, rotating black holes in D = 4 dimension”, (2024). [arXiv:2407.02997]
[16] W. Cong, et al., “Holographic CFT phase transitions and criticality for charged AdS black holes”, Journal of High Energy Physics 2022.8, 1 (2022). DOI: 10.1007/JHEP08(2022)174
[17] M. R. Visser, “Holographic thermodynamics requires a chemical potential for color”, Physical Review D 105.10, 106014 (2022). DOI: 10.1103/PhysRevD.105.106014
[18] A. Anabalón, et al., “Holographic thermodynamics of accelerating black holes”, Physical Review D 98.10, 104038 (2018). DOI: 10.1103/PhysRevD.98.104038
[19] Bo-B. Wei, Zh-F. Jiang, and R-B. Liu, “Thermodynamic holography”, Scientific Reports 5.1, 15077 (2015). DOI: 10.1038/srep15077
[20] M. B. Ahmed, et al., “Holographic dual of extended black hole thermodynamics”, Physical Review Letters 130.18, 181401 (2023). DOI: 10.1103/PhysRevLett.130.181401
[21] A. Anand, et al., “Analyzing WGC and WCCC through Charged Scalar Fields Fluxes with Charged AdS Black Holes Surrounded by Perfect Fluid Dark Matter in the CFT Thermodynamics”, (2024). [arXiv:2411.04134]
[22] M. R. Alipour, et al. “The interplay of WGC and WCCC via charged scalar field fluxes in the RPST framework”, (2024). [arXiv:2406.13784]
[23] A. Anand and S. Noori Gashti, “Universal Relations with the Non-Extensive Entropy Perspective”, (2024). [arXiv:2411.02875]
[24] M. Crossley, E. Dyer, and J. Sonner, “Super-Re´nyi entropy & Wilson loops for N = 4 SYM and their gravity duals”, Journal of High Energy Physics 2014.12, 1 (2014). DOI: 10.1007/JHEP12(2014)001
[25] Ch. Promsiri, E. Hirunsirisawat, and W. Liewrian, “Thermodynamics and Van der Waals phase transition of charged black holes in flat spacetime via Re´nyi statistics”, Physical Review D 102.6, 064014 (2020). DOI: 10.1103/PhysRevD.102.064014
[26] A. Re´nyi, “On the dimension and entropy of probability distributions”, Acta Mathematica Academiae Scientiarum Hungarica 10, 193 (1959). DOI: 10.1007/BF02063299
[27] F. Barzi, H. El Moumni, and K. Masmar, “Re´nyi topology of charged-flat black hole: Hawking-Page and Van-der-Waals phase transitions”, Journal of High Energy Astrophysics 42, 63 (2024). DOI: 10.1016/j.jheap.2024.03.005
[28] M. Masi, “A step beyond Tsallis and Re´nyi entropies”, Physics Letters A 338.3-5, 217 (2005). DOI: 10.1016/j.physleta.2005.01.094
[29] A. Majhi, “Non-extensive statistical mechanics and black hole entropy from quantum geometry”, Physics Letters B 775, 32 (2017). DOI: 10.1016/j.physletb.2017.10.043
[30] A. S. Jahromi, et al., “Generalized entropy formalism and a new holographic dark energy model”, Physics Letters B 780, 21 (2018). DOI: 10.1016/j.physletb.2018.02.052
Volume 4, Issue 4
December 2024
Pages 59-70
  • Receive Date: 14 November 2024
  • Revise Date: 29 November 2024
  • Accept Date: 29 November 2024