Quantum Theory of 3+1 Gravity and Dark Matter: A New Formulation of The Gupta-Feynman Based Quantum Field Theory of 3+1 Einstein Gravity

Document Type : Regular article

Authors

1 Department of Physics, Government Degree College, Tangmarg, Kashmir, 193402 India; Canadian Quantum Research Center 204-3002 32 Ave Vernon, BC V1T 2L7 Canada

2 Departamento de Fisica Universidad Nacional de La Plata, 1900 La Plata-Argentina Consejo Nacional de Investigaciones Científicas y Tecnológicas, (IFLP-CCT-CONICET)-C. C. 727, 1900 La Plata-Argentina; Academia de Ciencias de America Latina

3 Canadian Quantum Research Center 204-3002 32 Ave Vernon, BC V1T 2L7 Canada; Departamento de Física, Universidad Nacional de La Plata, 1900 La Plata-Argentina; Departamento de Matemática, Universidad Nacional de La Plata, 1900 La Plata-Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas, (IFLP-CCT-CONICET)-C. C. 727, 1900 La Plata-Argentina

Abstract

Gravitons and axions play an important role with regards to dark matter. Here, by appeal to developments of Gupta and Feynman and using a novel mathematical theory based on Ultrahyperfunctions [1] , we are able to provide an exact, quantum relativistic expression for the gravitons and axions self-energies. For a complete explanation of Ultrahyperfunctions and their uses in Quantum Field Theory see [2]. Ultrahyperfunctions (UHF) are in the most cases the generalization and extension to the complex plane of Schwartz ’tempered distributions. For example, in our book [2] and in the references [3, 4, 5, 6] you can find a large number of examples of Ultrahyperfunctions. This manuscript is an application to Einstein’s Gravity and Dark Matter (EG) of the mathematical theory developed by Bollini et al [3, 4, 5, 6] and continued for more than 25 years by one of the authors of this paper. We will quantize EG using the most general quantization approach, the Schwinger-Feynman variational principle [15], which is more appropriate and rigorous than the popular functional integral method (FIM). FIM is not applicable here because our Lagrangian contains derivative couplings. We use the Einstein Lagrangian as obtained by Gupta [16, 17, 18], but we added a new constraint to the theory. Thus the problem of lack of unitarity for the S matrix that appears in the procedures of Gupta and Feynman disappear Furthermore, we considerably simplify the handling of constraints, eliminating the need to appeal to ghosts for guarantying unitarity of the theory. Our theory is obviously non-renormalizable. However, this inconvenience is solved by resorting to the theory developed by Bollini et al. [3, 4, 5, 6] This theory is based on the thesis of Alexander Grothendieck [19] and on the theory of Ultrahyperfunctions Based on these papers, a complete theory has been constructed for 25 years that is able to quantize non-renormalizable Field Theories (FT).
Because we are using a Gupta-Feynman based EG Lagrangian and to the new mathematical theory we have avoided the use of ghosts, as we have already mentioned, to obtain a unitary QFT of EG Moreover the self-energy of the graviton changes its mass and propagator upon interaction with the axion. The mass of the graviton can increase and the bare propagator changes to the dressed propagator. This phenomenon is measurable, but very difficult to detect since the bare mass of the graviton is zero and that of the axion is extremely small. Also, for the first time in the literature, we give explicit formulas for the self-energy of the graviton, interacting and non-interacting with axions. Also, for the first time in the literature, we present 17 graphs corresponding to those self-energies.

Keywords

Main Subjects

 

Article PDF

 [1] J. Sebastiao e Silva, “Les fonctions analytiques comme ultra-distributions dans le calcul opérationnel”, Math. Ann. 136 38 (1958). DOI: https://doi.org/10.1007/BF01350287
[2] A. Plastino and M. C. Rocca, “Dimensional Regularization and Non-Renormalizable Quantum Field Theories”, Cambridge Scholars Publishing (2021).
[3] C. G. Bollini, T. Escobar, and M. C. Rocca, “Convolution of Ultradistributions and Field Theory”, Int. J. of Theor. Phys. 38 2315 (1999). DOI: https://doi.org/10.1023/A:1026623718239
[4] C. G. Bollini and M. C. Rocca, “Convolution of Lorentz invariant ultradistributions and field theory”, Int. J. of Theor. Phys. 43 1019 (2004). DOI: https://doi.org/10.1023/B:IJTP.0000048599.21501.93
[5] C. G. Bollini and M. C. Rocca, “Convolution of n-Dimensional Tempered Ultradistributions and Field Theory”, Int. J. of Theor. Phys. 43 59 (2004). DOI: https://doi.org/10.1023/B:IJTP.0000028850.35090.24
[6] C. G. Bollini, P. Marchiano, and M. C. Rocca, “Convolution of ultradistributions, field theory, Lorentz invariance and resonances”, Int. J. of Theor. Phys. 46 3030 (2007). DOI: https://doi.org/10.1007/s10773-007-9418-y
[7] A. Visconti, “Quantum Field Theory”, Pergamon Press (1969).
[8] S. N. Gupta, “Quantization of Einstein’s Gravitational Field: Linear Approximation”, Proc. Pys. Soc. A 65 161 (1952).
[9] S. N. Gupta, “Quantization of Einstein’s Gravitational Field: General Treatment”, Proc. Pys. Soc. A 65 608 (1952).
[10] S. N. Gupta, “Supplementary conditions in the quantized gravitational theory”, Phys. Rev. 172 1303 (1968). DOI: https://doi.org/10.1103/PhysRev.172.1303
[11] A. Grothendieck, “Produits Tensoriels Topologiques et Espaces Nucleaires”, Mem. Amer. Math Soc. 16 (1955).
[12] L. Schwartz, “Théorie des distributions à valeurs vectorielles. I”, Annales de l’Institut Fourier 7 1 (1957).
[13] L. Schwartz, “Théorie des distributions à valeurs vectorielles. II”, Annales de l’Institut Fourier, 8 1 (1958).
[14] D. H. T. Franco and L. H. Renoldi, “A note on Fourier–Laplace transform and analytic wave front set in theory of tempered ultrahyperfunctions”, J. Mathematical Analysis and Applications, 325 819 (2007). DOI: https://doi.org/10.1016/j.jmaa.2006.01.082
[15] D. H. T. Franco, “Holomorphic extension theorem for tempered ultrahyperfunctions”, Portugaliae Mathematica 66(2) 175 (2009).
 [16] D. H. T. Franco and L. H. Renoldi, PoS IC2006 (2006) 047. Contribution to: 5th International Conference on Mathematical Methods in Physics (IC 2006).
[17] D. H. T. Franco, J. A. Lourenço, and L. H. Renoldi, “The ultrahyperfunctional approach to non-commutative quantum field theory”, J. Phys. A: Math. Theor. 41 095402 (2008). DOI: 10.1088/1751-8113/41/9/095402
[18] D. H. T. Franco, J. A. Lourenço, and L. H. Renoldi, “The ultrahyperfunctional approach to non-commutative quantum field theory”, J. Phys. A: Math. Theor. 42 369801 (2009). DOI: 10.1088/1751-8113/42/36/369801
[19] A. Plastino and M. C. Rocca, “Quantum field theory, Feynman-, Wheeler propagators, dimensional regularization in configuration space and convolution of Lorentz Invariant Tempered Distributions”, J. Phys. Commun. 2 115029 (2018). DOI: 10.1088/2399- 6528/aaf186
[20] A. Plastino and M. C. Rocca, “Gupta-feynman based quantum field theory of einstein’s gravity”, J. Phys. Commun. 4 035014 (2020). DOI: 10.1088/2399-6528/ab8178
[21] M. Hameeda, B. Pourhassan, M. C. Rocca, and A. Bahroz Brzo, “Gravitational partition function modified by superlight braneworld perturbative modes”, PRD 103 106019 (2021). DOI: https://doi.org/10.1103/PhysRevD.103.106019
[22] M. Hameeda, B. Pourhassan, M. C. Rocca, and A. Bahroz Brzo, “Two approaches that prove divergence free nature of non-local gravity”, EPJC 81 146 (2021). DOI: https://doi.org/10.1140/epjc/s10052-021-08940-0
[23] M. Hameeda, A. Plastino, and M. C. Rocca, “Galaxies’ clustering generalized theory”, Physics of the Dark Universe 32 100816 (2021). DOI: https://doi.org/10.1016/j.dark.2021.100816
[24] M. Hameeda, B. Pourhassan, M. C. Rocca, and M. Faizal, “Finite Tsallis gravitational partition function for a system of galaxies”, General Relativity and Gravitation 53 41 (2021). DOI: https://doi.org/10.1007/s10714-021-02813-3
[25] M. Hameeda, Q. Gani, B. Pourhassan, and M. C. Rocca, “Boltzmann and Tsallis statistical approaches to study quantum corrections at large distances and clustering of galaxies”, IJMPA 37 2250116 (2022). DOI: https://doi.org/10.1142/S0217751X22501160
[26] M. Hameeda and M.C. Rocca, “Gupta–Feynman-based quantum theory of gravity and the compressed space”, IJMPA 37 2250136 (2022). DOI: https://doi.org/10.1142/S0217751X22501366
[27] Q. Gani, M. Hameeda, B. Pourhassan, and M. C. Rocca, “Revisiting the Schwarzschild Black Hole Solution: A Distributional Approach”, PDU 46 101604 (2024).
[28] M. Hameeda and M.C. Rocca, “Supercoherent states of the open NS world sheet superstring”, JHAP 1 57 (2021). DOI: https://doi.org/10.48550/arXiv.2109.02461
[29] M. Hameeda, A. Plastino, and M. C. Rocca, “Statistical mechanics description of an empirical scenario in which gravity was discussed when coupled to a harmonic oscillator”, IJMPB, (2024). DOI: https://doi.org/10.1142/S0217979225500869
[30] R. P. Feynman, “Quantum theory of gravitation”, Acta Phys. Pol. 24 697 (1963).
[31] H. Kleinert, “Particles and Quantum Fields”, Free web version (2016).
[32] R. D. Peccei, “The Strong CP Problem and Axions”, Axions: Theory, Cosmology, and Experimental Searches 741 3 (2008). DOI: https://doi.org/10.1007/978-3-540-73518- 2_1
[33] V. Guillemin, “IM Gelff fand and GE Shilov, Generalized functions”, Vol. 1 Academic Press (1964).
[34] M. Hasumi, “Note on the n-dimensional tempered ultra-distributions”, Tohoku Mathematical Journal, Second Series 13 94 (1961). DOI: https://doi.org/10.2748/tmj/1178244354
[35] I. M.Gel’fand and N. Ya. Vilenkin, “Generalized Functions”, 4, Academic Press (1968).
[36] L. Schwartz, “Théorie des distributions”, Hermann, Paris (1966).
[37] R. F. Hoskins and J. Sousa Pinto, “Distributions, Ultradistributions and other Generalised Functions”, Ellis Horwood (1994).
[38] M. C. Rocca, A. R. Plastino, A. Plastino, G. L. Ferri, and A. L. De Paoli, “New solution of diffusion–advection equation for cosmic-ray transport using ultradistributions”, J. Statistical Physics 161 986 (2015). DOI: https://doi.org/10.1007/s10955-015-1359-x
[39] C. G. Bollini, O. Civitarese, A. L. De Paoli, and M. C. Rocca,“Gamow states as continuous linear functionals over analytical test functions”, J. Math. Phys. 37 4235 (1996).
[40] A. L. De Paoli, M. Estevez, H. Vucetich, and M. C. Rocca, “Study of gamow states in the rigged hilbert space with tempered ultradistributions”, Inf. Dim. Anal., Quant. Prob. and Rel. Top. 4 511 (2001). DOI: https://doi.org/10.1142/S0219025701000607
[41] C. G. Bollini and M. C. Rocca, “Bosonic string and string field theory: a solution using ultradistributions of exponential type”, Int. J. of Theor. Phys. 47 1409 (2008). DOI: https://doi.org/10.1007/s10773-007-9583-z
[42] C. G. Bollini and M. C. Rocca, “Superstring and Superstring Field Theory: a new solution using Ultradistributions of exponential type”, Int. J. of Theor. Phys. 48 1053 (2009). DOI: https://doi.org/10.1007/s10773-008-9878-8
[43] C. G. Bollini and M. C. Rocca, The Open Nuc. and Part. Phys. J. 4 4 (2011).
[44] S. Soroushfar, B. Pourhassan, and İ. Sakallı, “Exploring non-perturbative corrections in thermodynamics of static dirty black holes”, PDU 44 101457 (2014). DOI: https://doi.org/10.1016/j.dark.2024.101457
[45] İ. Sakallı and G. T. Hyusein, “Quasinormal modes of charged fermions in linear dilaton black hole spacetime: exact frequencies”, Turkish Journal of Physics 45 43 (2021). DOI: https://doi.org/10.3906/fiz-2012-6
[46] I. Sakalli and O.A. Aslan, “Absorption cross-section and decay rate of rotating linear dilaton black holes”, Astroparticle Physics 74 73 (2016). DOI: https://doi.org/10.1016/j.astropartphys.2015.10.005
[47] A. Taleshian, M. S. Nataj, and B. Pourhassan, “Closed 2-Form of 2D black holes from geometric prequantization method”, IJTP 53 3943 (2014). DOI: https://doi.org/10.1007/s10773-014-2145-2
[48] I. M. Gel’fand and G. E. Shilov, “Generalized Functions”, Vol. 2 Academic Press (1968).
[49] R. Delbourgo and V. B. Prasad, “Supersymmetry in the four-dimensional limit”, J. Phys. G: Nuclear Physics 1 377 (1975). DOI: 10.1088/0305-4616/1/4/001
[50] D. G. Barci, C.G. Bollini, and M. C. Rocca, “Quantization of a sixdimensional Wess-Zumino model”, Il Nuovo Cimento 108 797 (1995). DOI: https://doi.org/10.1007/BF02731021
Volume 4, Issue 4
December 2024
Pages 21-58
  • Receive Date: 27 October 2024
  • Revise Date: 15 November 2024
  • Accept Date: 21 November 2024