Impact of Perfect Fluid Dark Matter on the Thermodynamics of AdS Ayón-Beato-GarcÍa Black Holes

Document Type : Regular article

Authors

1 Department of Physics, Institute of Applied Sciences and Humanities, GLA University, Mathura 281406, Uttar Pradesh, India;

2 Department of Physics, Institute of Applied Sciences and Humanities, GLA University, Mathura 281406, Uttar Pradesh, India; Visiting Associate: Inter-University Center of Astronomy and Astrophysics (IUCAA), Pune

3 Department of Physics, K.L.S. College, Nawada, Magadh University, Bodh Gaya, Bihar 805110, India; Canadian Quantum Research Center 204-3002 32 Ave Vernon, BC V1T 2L7 Canada; Department of General & Theoretical Physics, L. N. Gumilyov Eurasian National University, Astana, 010008, Kazakhstan; Visiting Associate: Inter-University Center of Astronomy and Astrophysics (IUCAA), Pune

Abstract

In this paper, we derive the black hole solution in the context of nonlinear electrodynamics (NLED) coupled to a perfect fluid dark matter (PFDM) field. The resulting black hole solution interpolates between the AdS Ayón-Beato-GarcÍa (ABG) black hole in the absence of the PFDM field and the Schwarzschild black hole devoid of magnetic monopole charges and PFDM influence. A numerical investigation of the horizon structure and thermodynamic properties, including both local and global stability, is conducted for the obtained black hole solution. The presence of the NLED and PFDM fields shows that the thermodynamic quantities are modified. We observe that the behaviour of thermodynamical quantities of black holes depends on these parameters significantly. We also discuss the stability and phase transition dependency on these parameters.

Keywords

Main Subjects

 

Article PDF

[1] A. D. Sakharov, “The Initial Stage of an Expanding Universe and the Appearance of a Nonuniform Distribution of Matter”, Sov. Phys. JETP 22 241 (1966). DOI: https://ui.adsabs.harvard.edu/abs/1966JETP...22..241S
[2] E. B. Gliner, “Algebraic Properties of the Energy-Momentum Tensor and Vacuum-Like States of Matter”, Sov. Phys. JETP 22 378 (1966). DOI: 1966JETP...22..378G
[3] J. Bardeen, “Non-singular general-relativistic gravitational collapse”, Proceedings of GR5 (Tiflis, U.S.S.R., 1968). DOI: 1968qtr..conf...87B
[4] E. Ayon-Beato and A. Garcia, “The Bardeen Model as a Nonlinear Magnetic Monopole”, Phys. Lett. B 493 149 (2000). DOI: https://doi.org/10.1016/S0370- 2693(00)01125-4
[5] M. Born and L. Infeld, “Foundations of the new field theory”, J. Phys. Soc. Jap. 8 307 (1934). DOI: 10.1098/rspa.1934.0059
[6] M. Born, “Nonlinear Theory of the Electromagnetic”, Field Ann. Inst. Henri Poincare 7 155 (1937).
[7] R. G. Leigh, “DIRAC-BORN-INFELD ACTION FROM DIRICHLET σ-MODEL”, Mod. Phys. Lett. A 4 2767 (1989). DOI: 10.1142/S0217732389003099
[8] M. Banados, “Eddington-Born-Infeld action for dark energy and dark matter”, Phys. Rev. D 77 123534 (2008). DOI: 10.1103/PhysRevD.77.123534
[9] T. Tamaki, “Black hole solutions coupled to Born-Infeld electrodynamics with derivative corrections”, JCAP 05 004 (2004). DOI: 10.1088/1475-7516/2004/05/004
[10] T. Hagiwara, “A non-abelian Born-Infeld Lagrangian”, J. Phys. A 14 3059 (1981). DOI: 10.1088/0305-4470/14/11/027
[11] K. Jafarzade, M. Kord Zangeneh, and F. S. N. Lobo, “Shadow, deflection angle and quasinormal modes of Born-Infeld charged black holes”, JCAP 04 008 (2021). DOI: 10.1088/1475-7516/2021/04/008
[12] E. Ayon-Beato and A. Garcia, “Non-Singular Charged Black Hole Solution for Non-Linear Source”, Gen. Rel. Grav. 31 629 (1999). DOI: https://doi.org/10.1023/A:1026640911319
[13] E. Ayon-Beato and A. Garcia, “Regular black hole in general relativity coupled to nonlinear electrodynamics”, Phys. Rev. Lett. 80 5056 (1998). DOI: 10.1103/PhysRevLett.80.5056
[14] B. K. Singh, R. P. Singh, and D. V. Singh, “P - v criticality, phase structure and extended thermodynamics of AdS ABG black holes”, Eur. Phys. J. Plus 136 575 (2021). DOI: 10.1140/epjp/s13360-021-01562-1
[15] E. Ghasemi and H. Ghaffarnejad, “Magnetic charge effects on thermodynamic phase transition of modified anti de Sitter Ayon-Beato-Garcia black holes with five parameters”, JHAP 2 47 (2022). DOI: 10.22128/jhap.2022.524.1022
[16] B. Pourhassan and R. Campos Delgados, “Quantum Gravitational Corrections to the Geometry of Charged AdS Black Holes”, DOI: https://doi.org/10.48550/arXiv.2205.00238 [arXiv:2205.00238 [hep-th]].
[17] B. Pourhassan, S. Eslamzadeh, I. Sakallı, and S. Upadhyay, “Holographic Thermodynamics of an Enhanced Charged AdS Black Hole in String Theoryā€™s Playground”, JHAP 4(2) 15 (2024). DOI: 10.22128/jhap.2024.793.1070
[18] J. Sadeghi, S. N. Gashti, I. Sakalli, and B. Pourhassan, “Weak gravity conjecture of charged-rotating-AdS black hole surrounded by quintessence and string cloud”, Nucl. Phys. B 1004 116581 (2024). DOI: 10.1016/j.nuclphysb.2024.116581
[19] J. Sadeghi, B. Pourhassan, S. Noori Gashti, S. Upadhyay, and E. N. Mezerji, “The emergence of universal relations in the AdS black holes thermodynamics”, Phys. Scripta 98(2) 025305 (2023). DOI: 10.1088/1402-4896/acb40b
[20] U. Debnath, B. Pourhassan, and I. Sakalli, “Modified cosmic Chaplygin AdS black hole”, Mod. Phys. Lett. A 37(14) 2250085 (2022). DO: 10.1142/S0217732322500857
[21] A. Uniyal, S. Kanzi, and İ. Sakallı, “Some observable physical properties of the higher dimensional dS/AdS black holes in Einstein-bumblebee gravity theory”, Eur. Phys. J. C 83(7) 668 (2023). DOI: 10.1140/epjc/s10052-023-11846-8
[22] S. G. Ghosh, A. Kumar, and D. V. Singh, “Anti-de Sitter Hayward black holes in Einstein–Gauss–Bonnet gravity”, Phys. Dark Univ. 30 100660 (2020). DOI: 10.1016/j.aop.2020.168214
[23] D. V. Singh, S. G. Ghosh, and S. D. Maharaj, “Bardeen-like regular black holes in 5D Einstein-Gauss-Bonnet gravity”, Annals Phys. 412 168025 (2020). DOI: 10.1016/j.aop.2019.168025
[24] D. V. Singh, S. G. Ghosh, and S. D. Maharaj, “Bardeen-like regular black holes in 5D Einstein-Gauss-Bonnet gravity”, Annals Phys. 412, 168025 (2020). DOI: 10.1016/j.aop.2019.168025
[25] B. Singh, B. K. Singh, and D. V. Singh, “Thermodynamics, phase structure of Bardeen massive black hole in Gauss-Bonnet gravity”, Int. J. Geom. Meth. Mod. Phys. 20 23501 (2023). DOI: 10.1142/S0219887823501256
[26] Y. Myrzakulov, K. Myrzakulov, S. Upadhyay, and D. V. Singh, “Quasinormal modes and phase structure of regular AdS Einstein–Gauss–Bonnet black holes”, Int. J. Geom. Meth. Mod. Phys. 20 2350 (2023). DOI: 10.1142/S0219887823501219
[27] S. Upadhyay and D. V. Singh, “Black hole solution and thermal properties in 4D AdS Gauss–Bonnet massive gravity”, Eur. Phys. J. Plus 137 383 (2022). DOI: 10.1140/epjp/s13360-022-02569-y
[28] B. Eslam Panah, K. Jafarzade, and S. H. Hendi, “Charged 4D Einstein-Gauss-BonnetAdS black holes: Shadow, energy emission, deflection angle and heat engine”, Nucl. Phys. B 961 115269 (2020). DOI: 10.1016/j.nuclphysb.2020.115269
[29] S. G. Ghosh, D. V. Singh, R. Kumar, and S. D. Maharaj, “Phase transition of AdS black holes in 4D EGB gravity coupled to nonlinear electrodynamics”, Annals Phys. 424 168347 (2021). DOI: 10.1016/j.aop.2020.168347
[30] D. V. Singh, S. G. Ghosh, and S. D. Maharaj, “Clouds of strings in 4D Einstein–Gauss–Bonnet black holes”, Phys. Dark Univ. 30 100730 (2020). DOI: 10.48550/arXiv.2003.14136
[31] D. V. Singh and S. Siwach, “Thermodynamics and P-v criticality of Bardeen-AdS Black Hole in 4D Einstein-Gauss-Bonnet Gravity”, Phys. Lett. B 808 135658 (2020). DOI: 10.1016/j.physletb.2020.135658
[32] P. Paul, S. Upadhyay, and D. V. Singh, “Charged AdS black holes in 4D Einstein–Gauss–Bonnet massive gravity”, Eur. Phys. J. Plus 138 566 (2023). DOI: 10.1140/epjp/s13360-023-04176-x
[33] F. Ahmed, D. V. Singh, and S. G. Ghosh, “Five dimensional rotating regular black holes and shadow”, Gen. Rel. Grav. 54 21 (2022). DOI: 10.1007/s10714-022-02906-7
[34] M. Sharif, W. Javed, “Thermodynamics of a Bardeen black hole in noncommutative”, Can. J. Phys. 89 1027 (2011). DOI: 10.1139/p11-089
[35] D. V. Singh, M. S. Ali, and S. G. Ghosh, “Noncommutative geometry inspired rotating black string”, Int. J. Mod. Phys. D 27(12) 1850108 (2018). DOI: 10.1142/S0218271818501080
[36] T. G. Rizzo, “Noncommutative inspired black holes in extra dimensions”, JHEP 09 021 (2006). DOI: 10.1088/1126-6708/2006/09/021
[37] B. K. Vishvakarma, D. V. Singh, and S. Siwach, “Parameter estimation of the BardeenKerr black hole in cloud of strings using shadow analysis”, Phys. Scripta 99 025022 (2024). DOI: 10.1088/1402-4896/ad1da1
[38] R. V. Maluf and J. C. S. Neves, “Thermodynamics of a class of regular black holes with a generalized uncertainty principle”, Phys. Rev. D 97 104015 (2018). DOI: 10.1103/PhysRevD.97.104015
[39] Mang-Sen Ma and Ren Zhao, “Corrected form of the first law of thermodynamics for regular black holes”, Class. Quantum Grav. 31 245014 (2014). DOI: 10.1088/0264- 9381/31/24/245014
[40] C. Bambi and L. Modesto, “Rotating regular black holes”, Phys. Lett. B 721, 329 (2013). DOI: 10.1016/j.physletb.2013.03.025.
[41] K. A. Bronnikov, “Regular magnetic black holes and monopoles from nonlinear electrodynamics”, Phys. Rev. D 63 044005 (2001). DOI: 10.1103/PhysRevD.63.044005
[42] A. Simpson and M. Visser, “Regular black holes with asymptotically Minkowski cores”, Universe, 6 8 (2020). DOI: 10.3390/universe6010008
[43] B. K. Singh, R. P. Singh, and D. V. Singh, “Extended phase space thermodynamics of Bardeen black hole in massive gravity”, Eur. Phys. J. Plus 135 862 (2020). DOI: 10.1140/epjp/s13360-020-00880-0
[44] S. Fernando, “Bardeen–de Sitter black holes”, Int. Journal of Mod. Phys. D 26 1750071 (2017). DOI: 10.1142/S0218271817500717
[45] D. V. Singh and N. K. Singh, “Anti-Evaporation of Bardeen de-Sitter Black Holes”, Annals Phys. 383 600 (2017). DOI: 10.1016/j.aop.2017.06.009
[46] Md. Sabir Ali and S.G. Ghosh, “Exact d-dimensional Bardeen-de Sitter black holes and thermodynamics”, Phys. Rev. D 98 084025 (2018). DOI: 10.1103/PhysRevD.98.084025
[47] D. V. Singh, S. G. Ghosh, and S. D. Maharaj, “Exact nonsingular black holes and thermodynamics”, Nucl. Phys. B 981 115854 (2022). DOI: 10.1016/j.nuclphysb.2022.115854
[48] M. E. Rodrigues and H. A. Vieira, “Bardeen solution with a cloud of strings”, Phys. Rev. D 106 084015 (2022). DOI: 10.1103/PhysRevD.106.084015
[49] G. Panotopoulos and A. Rincón, “Quasinormal modes of regular black holes with non-linear electrodynamical sources”, Eur. Phys. J. Plus 134 300 (2019). DOI: 10.1140/epjp/i2019-12686-x
[50] B. K. Vishvakarma, D. V. Singh, and S. Siwach, “Shadows and quasinormal modes of the Bardeen black hole in cloud of strings”, Eur. Phys. J. Plus 138(6) 536 (2023). DOI: 10.1140/epjp/s13360-023-04174-z
[51] D. V. Singh, V. K. Bhardwaj, and S. Upadhyay, “Thermodynamic properties, thermal image and phase transition of Einstein-Gauss-Bonnet black hole coupled with nonlinear electrodynamics”, Eur. Phys. J. Plus 137 969 (2022). DOI: 10.1140/epjp/s13360-022- 03208-2
[52] D. V. Singh, A. Shukla, and S. Upadhyay, “Quasinormal modes, shadow and thermodynamics of black holes coupled with nonlinear electrodynamics and cloud of strings”, Annals Phys. 447 169157 (2022). DOI: 10.1016/j.aop.2022.169157
[53] B. Singh, D. Veer Singh, and B. Kumar Singh, “Thermodynamics, phase structure and quasinormal modes for AdS Heyward massive black hole”, Phys. Scripta 99(2) 025305 (2024). DOI: 10.1088/1402-4896/ad1da4
[54] H. K. Sudhanshu, D. V. Singh, S. Upadhyay, Y. Myrzakulov, and K. Myrzakulov, “Thermodynamics of a newly constructed black hole coupled with nonlinear electrodynamics and cloud of strings”, Phys. Dark Univ. 46 101648 (2024). DOI: 10.1016/j.dark.2024.101648
[55] S. Hawking and D. Page, “Thermodynamics of black holes in anti-de Sitter space”, Commun. Math. Phys. 87, 577 (1983). DOI: 10.1007/BF01208266
[56] P. C. W. Davis, “The Thermodynamic Theory of Black Holes”, Proc. R. Soc. A 353, 499 (1977). DOI: 10.1098/rspa.1977.0047
Volume 4, Issue 4
December 2024
Pages 85-99
  • Receive Date: 16 October 2024
  • Revise Date: 20 November 2024
  • Accept Date: 26 November 2024