[1] E. Konishi, “Quantum measuring systems: considerations from the holographic principle”, JHAP 3(1), 31 (2023). DOI: 10.22128/jhap.2023.652.1039
[2] E. Konishi, “A remark on quantum measuring systems and the holographic principle”, JHAP 3(4), 81 (2023). DOI: 10.22128/jhap.2023.752.1064
[3] E. Konishi, “More on quantum measuring systems and the holographic principle”, JHAP 4(3), 11 (2024). DOI: 10.22128/jhap.2024.866.1092
[4] G. ’t Hooft, DOI: 10.48550/arXiv.gr-qc/9310026 [arXiv:gr-qc/9310026]
[5] L. Susskind, “The world as a hologram”, J. Math. Phys. 36, 6377 (1995). DOI: 10.1063/1.531249
[6] R. Bousso, “The holographic principle”, Rev. Mod. Phys. 74, 825 (2002). DOI: 10.1103/RevModPhys.74.825
[7] J. M. Maldacena, “The large-N limit of superconformal field theories and supergravity”, Adv. Theor. Math. Phys. 2, 231 (1998). DOI: 10.1023/A:1026654312961
[8] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz, “Large-N field theories, string theory and gravity”, Phys. Rep. 323, 183 (2000). DOI: 10.1016/S0370- 1573(99)00083-6
[9] B. Swingle, “Entanglement renormalization and holography”, Phys. Rev. D 86, 065007 (2012). DOI: 10.1103/PhysRevD.86.065007
[10] H. Matsueda, M. Ishibashi and Y. Hashizume, “Tensor network and a black hole”, Phys. Rev. D 87, 066002 (2013). DOI: 10.1103/PhysRevD.87.066002
[11] N. Bao, C. Cao, S. M. Carroll, A. Chatwin-Davies and N. Hunter-Jones, “Consistency conditions for an AdS multiscale entanglement renormalization ansatz correspondence”, Phys. Rev. D 91, 125036 (2015). DOI: 10.1103/PhysRevD.91.125036
[12] E. Konishi, “Holographic interpretation of Shannon entropy of coherence of quantum pure states”, EPL 129, 11006 (2020). DOI: 10.1209/0295-5075/129/11006
[13] E. Konishi, “Addendum: Holographic interpretation of Shannon entropy of coherence of quantum pure states”, EPL 132, 59901 (2020). DOI: 10.1209/0295-5075/132/59901
[14] E. Konishi, “Imaginary-time path-integral in bulk space from the holographic principle”, JHAP 1(1), 47 (2021). DOI: 10.22128/jhap.2021.432.1001
[15] B. d’Espagnat, Conceptual Foundations of Quantum Mechanics. 2nd edn. W. A. Benjamin, Reading, Massachusetts (1976).
[16] S. Machida and M. Namiki, “Theory of measurement of quantum mechanics: mechanism of reduction of wave packet. I”, Prog. Theor. Phys. 63, 1457 (1980). DOI: 10.1143/PTP.63.1457
[17] S. Machida and M. Namiki, “Theory of measurement of quantum mechanics: mechanism of reduction of wave packet. II”, Prog. Theor. Phys. 63, 1833 (1980). DOI: 10.1143/PTP.63.1833
[18] E. Konishi, “Work required for selective quantum measurement”, J. Stat. Mech. 063403 (2018). DOI: 10.1088/1742-5468/aac13f
[19] J. M. Jauch, “Systems of observables in quantum mechanics”, Helv. Phys. Acta. 33, 711 (1960).
[20] H. Araki, “A remark on Machida–Namiki theory of measurement”, Prog. Theor. Phys. 64, 719 (1980). DOI: 10.1143/PTP.64.719
[21] E. Konishi, “Addendum: Work required for selective quantum measurement”, J. Stat. Mech. 019501 (2019). DOI: 10.1088/1742-5468/aaf31f
[22] E. Konishi, “Projection hypothesis from the von Neumann-type interaction with a Bose-Einstein condensate”, EPL 136, 10004 (2021). DOI: 10.1209/0295-5075/ac335f
[23] H. Umezawa, Advanced Field Theory: Micro, Macro and Thermal Physics. American Institute of Physics, New York (1993).
[24] J. Von Neumann, Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton, NJ (1955).
[25] E. Konishi, “Projection hypothesis in the setting for the quantum Jarzyski equality”, Int. J. Quantum Information 2450033 (2024). DOI: 10.1142/S0219749924500333