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Abstract. Based on the author’s previous argument of the constant existence of
the subject of quantum measurement in the framework of the classicalized holographic
tensor network, for two quantum measuring systems M1 and M2 in the bulk spacetime,
we calculate the result of the processes (((M1)I − M1)II + M2)III as the subject of
quantum measurement. This process is obtained from the process (((M1)I + M2)II −
M1)III by swapping processes II and III. The latter process is within the Lorentzian
regime of spacetime and results in the quantum measuring system M2. Therefore, we
conclude that the objective result is also M2.
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1 Introduction
This article is the fourth in a series [1–3] to investigate the links between quantum measuring
systems and the holographic principle [4–8], and is positioned as a supplementary article to
Ref. [2]. In Ref. [2], in the framework of the classicalized holographic tensor network in
three spacetime dimensions [9–14], we showed the constant existence of the subject of quan-
tum measurement by the temporal analytic continuation of the complex-valued quantum
probability amplitudes of non-relativistic free particles in real time (the Lorentzian regime
of spacetime) to their real-valued conditional probability densities in imaginary time (the
Euclidean regime of spacetime) [1,2].1

In the Euclidean regime, we classicalize the quantum state of the hologram, that is, a
strongly coupled conformal field theory (CFT) on the two-dimensional boundary spacetime
[12–14]. The classicalized hologram HE is the ground state |ψ⟩CFT of the boundary CFT
with the Abelian restricted set A of the qubits observables in the presence of the superse-
lection rule operator σ3 (the one-qubit third Pauli matrix) [14,19]:

HE = (|ψ⟩CFT,A) . (1)

In the Lorentzian regime, a quantum measuring system M in the bulk spacetime reads
a quantum mechanical event (i.e., an eigenstate of the discrete measured observable) from
a statistical mixture of events, which is obtained from the complete quantum decoherence
as a result of the interaction between the quantum measured system and the macroscopic
measurement apparatus [20,21]. The quantum measuring system M is the pair of a quantum
mechanical event-reading system ψ with its discrete meter variable M̂ [22] and a quantum-
field-theoretical macroscopic Bose–Einstein condensate A [23]

M = (ψ,A) (2)

in the presence of the von Neumann-type interaction [24,25] between them [22].
In this article, we consider operations of quantum measuring systems. As important

operations, we start from a single quantum measuring system M1, and then we consider the
fusion of M1 and another quantum measuring system M2 as a single quantum measuring
system in total. The resultant quantum measuring system has the quantum mechanical
system ψ1,2, which is a quantum mechanically entangled system of ψ1 and ψ2 in the diagonal
eigenbasis of the discrete composite meter variable M̂1⊗M̂2, and a composite system of A1

and A2 in the presence of the von Neumann-type interaction between them:

((M1)I +M2)II = (ψ1,2, A1 ⊗A2) . (3)

Here, we note that ψ1,2 is not the tensor product ψ1 ⊗ ψ2.
Our objective is to calculate the subject of quantum measurement given by the following

process:
(((M1)I −M1)II +M2)III . (4)

This problem was not addressed in Ref. [2].
Within the Lorentzian regime, we cannot calculate this equation because, after process

II, the quantum measuring system (M1)I is the empty system M∅. However, owing to the
constant existence of the subject of quantum measurement, we can calculate this equation.

1We translate the term subject into the event reading by a quantum measurement [2]. In this article, the
term quantum measurement refers to a projective quantum measurement in the ensemble interpretation of
quantum mechanics [15–18].
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The rest of this article is organized as follows. In the next section, we perform the
calculation of Eq. (4) and obtain the result M2 as the subject of quantum measurement
(not just as a quantum system). In the final section, we conclude the article with some
remarks.

2 Calculation
The theoretical advance obtained in Ref. [2] is the constant existence of the subject of
quantum measurement. Specifically, we argued that the empty quantum measuring system
M∅ in the Lorentzian regime is equivalent to the classicalized hologram in the Euclidean
regime as the subject of quantum measurement:

M∅ ≃ HE . (5)

Because of the constant existence of the subject of quantum measurement, we can equate
the following two processes:

(((M1)I −M1)II +M2)III = (M2 + ((M1)I −M1)II)III

= (((M1)I +M2)II −M1)III , (6)

where we swap processes II and III. For this equation, see Figs. 1 and 2.

M1 M¯ > HE M2

Figure 1: Schematic of processes I (left), II (middle), and III (right) on the left-hand side
of Eq. (6).

M1 M1 M2 M2

Figure 2: Schematic of processes I (left), II (middle), and III (right) on the right-hand side
of Eq. (6).

Here, we can calculate the right-hand side of Eq. (6) because it is within the Lorentzian
regime. This equation means the following three temporally successive processes:

I Preparation of the single quantum measuring system M1.

II Preparation of another quantum measuring system M2 and the quantum mechanical
entanglement of it with M1 as in Eq. (3).
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III Contraction of system M1 in the composite system ((M1)I +M2)II. Then, we obtain
system M2.

Obviously, these three processes keep the subject of quantum measurement being unity and
we obtain the result

(((M1)I +M2)II −M1)III =M2 (7)

as the subject of quantum measurement.
Using the swap relation (6), we obtain the result of the objective calculation from Eq.

(7):
(((M1)I −M1)II +M2)III =M2 . (8)

3 Conclusion
In this article, based on the constant existence of the subject of quantum measurement, we
suggest the problem of calculating Eq. (4). This calculation was not done in Ref. [2] and
we have done it here by using the swap relation (6) of processes II and III in this equation.
In the following, we remark on both sides in this swap relation (6).

On the right-hand side of Eq. (6), that is, Eq. (7), all of the three processes I, II, and
III are done within the Lorentzian regime (L):

(7) : I (L) → II (L) → III (L) . (9)

In principle, this process can be realized artificially.
On the other hand, on the left-hand side of Eq. (6), that is, Eq. (8), processes I and III

are done in the Lorentzian regime, and process II is completed in the Euclidean regime (E):

(8) : I (L) → II (E) → III (L) . (10)

This process is not an artifact.
The constant existence of the subject of quantum measurement implies that the results

of these two processes (7) and (8) are the same system M2 and thus are equivalent to each
other as the subject of quantum measurement (not just as a quantum system).
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