Emergence of Time from Unitary Equivalence

Document Type : Regular article

Authors

1 Department of Physics, Osaka University, Toyonaka, Osaka 56, Japan; Department of Physics, Kobe University, Kobe-shi 657-8501, Hyogo, Japan; National Center for Theoretical Sciences, National Tsing-Hua University, Hsinchu 30013, Taiwan;

2 Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, US; Asia Pacific Center for Theoretical Physics, Pohang University of Science and Technology, Pohang 37673, Gyeongsangbuk-do, South Korea;

Abstract

We discuss the concept of unitary equivalence $\hat{H}\sim\hat{U}^{\dagger}\hat{H}_{\mathrm{mod}}\hat{U}$ between the modular Hamiltonian $\hat{H}_{\mathrm{mod}}$ and the subsystem Hamiltonian $\hat{H}$ in the context of realizing the emergence of time through a unitary operator $\hat{U}$. This concept suggests a duality between the modular flow and time evolution. Additionally, requiring unitary equivalence implies a connection between the "Modular Chaos Bound" and the "Chaos Bound". Furthermore, we demonstrate this duality using quantum chaos diagnostic quantities in the thermofield double state of a fermionic system. Quantum chaos diagnostic quantities are mathematical measures that characterize chaotic behavior in quantum systems. By examining these quantities in the thermofield double state, we illustrate the duality between them and the modular Hamiltonian. We show a specific duality between correlators, the spectral form factor, and the Loschmidt echo with the modular Hamiltonian. The spectral form factor is a quantity that provides information about the energy spectrum of a quantum system, while the Loschmidt echo characterizes the sensitivity of a system's modular time evolution to perturbations. Finally, we demonstrate that a different entanglement spectrum does not impose the same constraint on the subsystem Hamiltonian. The entanglement spectrum is related to entanglement entropy and provides information about the eigenvalues of the reduced density matrix associated with a subsystem. We discuss complex concepts related to the interplay between quantum chaos, time emergence, and the relationship between modular and subsystem Hamiltonians. These ideas are part of ongoing research in quantum information theory and related fields.

Keywords

Main Subjects

 

Article PDF

 [1] Y. Liao and V. Galitski, “Nonlinear sigma model approach to many-body quantum chaos: Regularized and unregularized out-of-time-ordered correlators”, Phys. Rev. B 98(20), 205124 (2018) [arXiv:1807.09799 [cond-mat.dis-nn]], DOI:10.1103/PhysRevB.98.205124
[2] J. Maldacena, S. H. Shenker, and D. Stanford, “A bound on chaos”, JHEP 08, 106 (2016) [arXiv:1503.01409 [hep-th]], DOI:10.1007/JHEP08(2016)106
[3] E. Dyer and G. Gur-Ari, “2D CFT Partition Functions at Late Times”, JHEP 08, 075 (2017) [arXiv:1611.04592 [hep-th]], DOI:10.1007/JHEP08(2017)075
[4] J. S. Cotler, G. Gur-Ari, M. Hanada, J. Polchinski, P. Saad, S. H. Shenker, D. Stanford, A. Streicher, and M. Tezuka, “Black Holes and Random Matrices”, JHEP 05, 118 (2017) [erratum: JHEP 09, 002 (2018)] [arXiv:1611.04650 [hep-th]], DOI:10.1007/JHEP05(2017)118
[5] D. L. Jafferis and L. Lamprou, “Inside the hologram: reconstructing the bulk observer’s experience”, JHEP 03, 084 (2022) [arXiv:2009.04476 [hep-th]], DOI:10.1007/JHEP03(2022)084
[6] J. De Boer and L. Lamprou, “Holographic Order from Modular Chaos”, JHEP 06, 024 (2020) [arXiv:1912.02810 [hep-th]], DOI:10.1007/JHEP06(2020)024
[7] A. Connes and C. Rovelli, “Von Neumann algebra automorphisms and time thermodynamics relation in general covariant quantum theories”, Class. Quant. Grav. 11, 2899- 2918 (1994) [arXiv:gr-qc/9406019 [gr-qc]], DOI:10.1088/0264-9381/11/12/007
[8] M. Schmitt, D. Sels, S. Kehrein, and A. Polkovnikov, “Semiclassical echo dynamics in the Sachdev-Ye-Kitaev model”, Phys. Rev. B 99(13), 134301 (2019) [arXiv:1802.06796 [cond-mat.stat-mech]], DOI:10.1103/PhysRevB.99.134301
[9] B. Yan, L. Cincio and W. H. Zurek, “Information Scrambling and Loschmidt Echo”, Phys. Rev. Lett. 124(16), 160603 (2020) [arXiv:1903.02651 [quant-ph]], DOI:10.1103/PhysRevLett.124.160603
[10] A. Bhattacharyya, W. Chemissany, S. Shajidul Haque, and B. Yan, “Towards the web of quantum chaos diagnostics”, Eur. Phys. J. C 82(1), 87 (2022) [arXiv:1909.01894 [hep-th]], DOI:10.1140/epjc/s10052-022-10035-3
[11] P. B. Denton, S. J. Parke, T. Tao, and X. Zhang, “Eigenvectors from Eigenvalues: a survey of a basic identity in linear algebra”, Bull. Am. Math. Soc. 59(1), 31-58 (2022) [arXiv:1908.03795 [math.RA]], DOI:10.1090/bull/1722
[12] R. de Mello Koch, J. H. Huang, C. T. Ma, and H. J. R. Van Zyl, “Spectral Form Factor as an OTOC Averaged over the Heisenberg Group”, Phys. Lett. B 795, 183-187 (2019) [arXiv:1905.10981 [hep-th]], DOI:10.1016/j.physletb.2019.06.025
 [13] C. T. Ma, “Early-Time and Late-Time Quantum Chaos”, Int. J. Mod. Phys. A 35(18), 2050082 (2020) [arXiv:1907.04289 [hep-th]], DOI:10.1142/S0217751X20500827
[14] F. S. Nogueira, S. Banerjee, M. Dorband, R. Meyer, J. v. Brink, and J. Erdmenger, “Geometric phases distinguish entangled states in wormhole quantum mechanics”, Phys. Rev. D 105(8), L081903 (2022) [arXiv:2109.06190 [hep-th]], DOI:10.1103/PhysRevD.105.L081903
[15] X. Huang and C. T. Ma, “Emergence of kinematic space from quantum modular geometric tensor”, Phys. Lett. B 825, 136893 (2022) [arXiv:2110.08703 [hep-th]], DOI:10.1016/j.physletb.2022.136893
[16] S. Banerjee, M. Dorband, J. Erdmenger, R. Meyer, and A. L. Weigel, “Berry phases, wormholes and factorization in AdS/CFT”, JHEP 08, 162 (2022) [arXiv:2202.11717 [hep-th]], DOI:10.1007/JHEP08(2022)162
Volume 4, Issue 4
December 2024
Pages 1-14
  • Receive Date: 06 September 2024
  • Revise Date: 26 September 2024
  • Accept Date: 03 October 2024