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Abstract. We discuss the concept of unitary equivalence Ĥ ∼ Û†ĤmodÛ between
the modular Hamiltonian Ĥmod and the subsystem Hamiltonian Ĥ in the context of
realizing the emergence of time through a unitary operator Û . This concept suggests a
duality between the modular flow and time evolution. Additionally, requiring unitary
equivalence implies a connection between the ”Modular Chaos Bound” and the ”Chaos
Bound”. Furthermore, we demonstrate this duality using quantum chaos diagnostic
quantities in the thermofield double state of a fermionic system. Quantum chaos di-
agnostic quantities are mathematical measures that characterize chaotic behavior in
quantum systems. By examining these quantities in the thermofield double state, we
illustrate the duality between them and the modular Hamiltonian. We show a specific
duality between correlators, the spectral form factor, and the Loschmidt echo with
the modular Hamiltonian. The spectral form factor is a quantity that provides infor-
mation about the energy spectrum of a quantum system, while the Loschmidt echo
characterizes the sensitivity of a system’s modular time evolution to perturbations.
Finally, we demonstrate that a different entanglement spectrum does not impose the
same constraint on the subsystem Hamiltonian. The entanglement spectrum is related
to entanglement entropy and provides information about the eigenvalues of the reduced
density matrix associated with a subsystem. We discuss complex concepts related to
the interplay between quantum chaos, time emergence, and the relationship between
modular and subsystem Hamiltonians. These ideas are part of ongoing research in
quantum information theory and related fields.
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1 Introduction
The out-of-time ordered correlator (OTOC) is a quantity that is used to study Quantum
Chaos and Quantum Information. It measures the sensitivity of a quantum system to small
changes in its initial conditions [1]. In the context of holography, the exponent of the OTOC,
denoted as λ, has been identified as the quantum analog of the classical Lyapunov exponent.
Saturation of a bound, λ = 2π/β, where β is the inverse temperature of the boundary theory,
in the OTOC can imply the emergence of Einstein gravity in the bulk theory [2].

The spectral form factor (SFF) is another quantity used to probe Quantum Chaos. It
provides information about the statistics of energy levels in a quantum system. Random
matrix theory has been employed to study the SFF in the context of black holes, offering
insights into late-time behavior and constraints on the bulk theory [3,4].

The question of reconstructing the bulk geometry from the entanglement spectrum of
the boundary theory is still an open area of research. This is analogous to the famous
question in mathematics, ”Can one hear the shape of a drum?”. In the Anti-de Sitter
(AdS)/Conformal Field Theory (CFT) correspondence, it is believed that there exists a
one-to-one correspondence between a gravitational theory in the bulk (AdS space) and a
quantum field theory on the boundary. However, the holographic principle alone may not
provide enough information to uniquely determine the bulk geometry. The idea behind our
question is that if there exists a unitary transformation, denoted as ÛO, which leaves an
observable invariant

Ĥ ∝ Û †
OÔÛO, |n⟩ → ÛÔ|n⟩, (1)

where |n⟩ is an eigenstate of Ĥ, and Ĥ is the Hamiltonian, then the corresponding bulk
geometry should also be insensitive to this unitary transformation and only depend on the
spectrum of the Hamiltonian Ĥ. This concept is referred to as unitary equivalence.

We propose considering Ô as a modular Hamiltonian, given by

Ĥ = βÛ†ÔÛ , (2)

where β is the inverse temperature and Ĥ is now the subsystem Hamiltonian. The entangle-
ment spectrum of the boundary theory then constrains the form of the Hamiltonian [5]. The
central question in this letter is: Can one hear the shape of geometry from unitary equiva-
lence? The central question we raise is whether it is possible to extract information about
the shape of the bulk geometry solely from the concept of unitary equivalence. In other
words, can the entanglement spectrum alone provide enough information to reconstruct the
bulk geometry in the AdS/CFT correspondence?

The Loschmidt echo with a modular Hamiltonian (LEMH) is a mathematical tool used
to analyze the behavior of quantum systems and provides a bound on chaotic behavior. The
modular chaos bound [6], derived from the LEMH, relates to the sensitivity of a quantum
state to infinitesimal perturbations. When this bound is saturated, it implies that the
quantum state is maximally sensitive to such perturbations.

The unitary equivalence condition suggests that the chaos bound and the modular chaos
bound are equivalent when the modular parameter is related to time by the formula s = tβ.
The relationship between the modular parameter and time, known as the ”Thermal Time
Hypothesis” [7], suggests that modular evolution and entanglement information can provide
insights into the emergence of time evolution in quantized Einstein gravity. It introduces
the notion of local time through the state of the system.

It is worth noting that the quantized Einstein gravity theory in a closed universe, de-
scribed by the Wheeler-DeWitt equation, does not naturally incorporate time evolution.
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However, modular evolution, which relies on the entanglement information of a state, can
provide insights into the emergence of time evolution. This is where the connection between
the LEHM (modular parameter) and the Out-of-Time-Ordered Correlator (OTOC) duality
becomes relevant. The duality between the LEHM and OTOC suggests that the modular
parameter is related to the notion of time evolution. Therefore, the idea put forward is that
time evolution should emerge from the modular flow, entanglement, and chaos bounds.

The entanglement spectrum, which represents the spectrum of eigenvalues of a reduced
density matrix, can capture important features of a system’s dynamics and correlations. In
certain cases, it has been observed that the entanglement spectrum can capture important
features of the system’s dynamics and correlation functions [8–10]. It can be related to
correlation functions through the bulk reconstruction correspondence, allowing one to obtain
information about correlations and dynamics in the bulk of the system. Analogies have been
drawn between the eigenvalues of a modular Hamiltonian (which governs the entanglement
structure) and the frequencies of a drum. Just as different frequencies of a drum produce
different vibrational patterns, the eigenvalues of a modular Hamiltonian can be associated
with different entanglement patterns in the system. Furthermore, the eigenvectors of a
subsystem Hamiltonian (which can be obtained from the entanglement spectrum [11]) can
be likened to the shape of a drum.

In this letter, we explore a specific set of random operators and their connection to two
important concepts in quantum physics: the Loschmidt echo (LE) and the SFF. Moreover,
we extend the existing studies on bosonic systems [9,10,12,13] to the realm of fermionic
systems. The thermofield double (TFD) state and Berry phase [14–16] serve as our cho-
sen applications for exploring the implications of these random operators. To establish our
results, we rely on the concept of unitary equivalence, which imposes constraints on the sub-
system Hamiltonian Ĥ and the modular Hamiltonian Ĥmod. To delve into our analysis, we
employ the eigenvalue-eigenvector identity. This identity allows us to use the entanglement
spectrum as a tool for reconstructing the Hamiltonian of the system.

2 SFF and LE in a Fermionic System
This section considers a generalization of Refs. [9,10] to the fermionic case. We will first
lay out the setup and show the similarity between the fermionic and bosonic systems. Then
we will demonstrate how the SFF and LE can be related to a specific type of correlators by
integrating over the parameters in fermionic coherent states.

2.1 Set-Up
Here, we briefly review the fermionic coherent state and introduce the relevant operator in
the calculations. We consider a two-state system (|0⟩ , |1⟩ ≡ ĉ† |0⟩) with a pair of creation
and annihilation operators (ĉ†, ĉ) satisfying the usual anti-commutation relation {ĉ, ĉ†} = 1.
The eigenstates correspond to the eigenvalues of the number operator N̂ = ĉ†ĉ, i.e. N̂ |0⟩ = 0
and N̂ |1⟩ = |1⟩ . The fermionic coherent state with Grassmann-valued parameters (ψ,ψ∗)
is defined by

|ψ⟩ ≡ D̂(ψ)|0⟩ =
(
1− 1

2
ψ∗ψ

)
|0⟩ − ψ|1⟩, (3)

which is generated by a displacement operator D̂ ≡ exp(ĉ†ψ − ψ∗ĉ) acting on the vacuum
state.
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The operators (defined at time t = 0 in the Heisenberg picture) which are central to our
calculation are defined by

Û(α,γ)(0) ≡ ei(α
∗ĉ+ĉ†α)+(γ∗ t̂−t̂†γ)e−

1
2α

∗α, (4)

where
t̂ ≡ ∂

∂ψ∗ , t̂† ≡ ∂

∂ψ
, (5)

and Grassmann-valued parameters (α,γ).
With the definition of the operator, it is equivalent to separating into two parts

Û(0) = Ŝ(0)T̂ (0), (6)

using the Baker-Campbell-Hausdorff formula, where

Ŝ(0) ≡ eiα
∗ĉeiĉ

†α, T̂ (0) ≡ eγ
∗ t̂−t̂†γ . (7)

The T̂ operator acts on the coherent state as a shift to the parameter:

T̂ (0)|ψ⟩ = |ψ + γ⟩, ⟨ψ|T̂ †(0) = ⟨ψ + γ|. (8)

This operator Û is inspired by the group element of the Heisenberg group when one considers
a bosonic quantum mechanical system [12,13]

Û(q1, q2) ≡ exp(iq1X̂(0) + iq2P̂ (0)), (9)

where q1, q2 are bosonic parameters, and X̂(0) and P̂ (0) are position and momentum oper-
ators, respectively. The operators act on the eigenstate of X̂(0) as

eiqX̂(0)|x⟩ = eiqx|x⟩, eiqP̂ (0)|x⟩ = |x− q⟩. (10)

Due to the similarity between the roles of X̂, P̂ and Ŝ, T̂ , we can generalize the bosonic
result to a fermionic system in a similar fashion.

2.2 Spectral Form Factor
For a system described by a Hamiltonian Ĥ at inverse temperature β, the partition function
is given by:

Z(β) = Tr e−βĤ =
〈
e−βĤ

〉
=

∫
dψ∗dψ ⟨ψ| e−βĤ |ψ⟩ . (11)

The spectral form factor (SFF) is the absolute value square with a complex inverse temper-
ature

S2(β, t) ≡ |Z(β + it)|2.
The t is the time of the system. The SFF captures information about the spectrum of the
system and should be a probe to quantum chaos at a late time [3]. We will show that the
SFF at inverse temperature β/2 is equivalent to the thermal expectation value of a two-point
function averaged over the coherent state and the operators Û of the form:

GAV,2 =

∫
dψ∗dψdα∗dαdγ∗dγ ⟨ψ|e−

β
2 Ĥ Û(α,γ)(t)e

− β
2 Ĥ Û†

(α,γ)(0)|ψ⟩

=

∫
ψ

∫
α,γ

⟨ψ|e−
β
2 Ĥ Û(α,γ)(t)e

− β
2 Ĥ Û †

(α,γ)(0)|ψ⟩ . (12)
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We have also used a shorthand notation∫
ψ

∫
α,γ

≡
∫
dψ∗dψdα∗dαdγ∗dγ . (13)

Note that we have regularized the thermal expectation value by inserting the thermal factors
slightly differently [1]. Let us proceed with the calculation while suppressing the parameters
of the Û operators:

GAV,2 =

∫
ψ

∫
α,γ

⟨ψ|e−
β
2 Ĥ Û(t)e−

β
2 Ĥ Û †(0)|ψ⟩

=

∫
ψ

∫
α,γ

⟨ψ|e(it−
β
2 )Ĥ T̂ (0)Ŝ(0)e−(it+ β

2 )Ĥ Ŝ†(0)T̂ †(0)|ψ⟩

=

∫
ψ,ψ1
ψ2,ψ3

∫
α,γ

⟨ψ|e(it−
β
2 )Ĥ |ψ1⟩⟨ψ1|T̂ (0)eiα

∗ĉ|ψ2⟩⟨ψ2|eiĉ
†αe−(it+ β

2 )Ĥe−iα
∗ĉ|ψ3⟩

× ⟨ψ3|e−iĉ
†αT̂ †(0)|ψ⟩

=

∫
ψ,ψ1
ψ2,ψ3

∫
α,γ

eiα
∗(ψ2−ψ3)ei(ψ

∗
2−ψ

∗
3 )α⟨ψ|e(it−

β
2 )Ĥ |ψ1⟩⟨ψ1|T̂ (0)|ψ2⟩⟨ψ2|e−(it+ β

2 )Ĥ |ψ3⟩

⟨ψ3|T̂ †(0)|ψ⟩ (14)

=

∫
ψ,ψ1
ψ2,ψ3

∫
γ

δ(ψ2 − ψ3)⟨ψ|e(it−
β
2 )Ĥ |ψ1⟩⟨ψ1|T̂ (0)|ψ2⟩⟨ψ2|e−(it+ β

2 )Ĥ |ψ3⟩⟨ψ3|T̂ †(0)|ψ⟩

(15)

=

∫
ψ,ψ1,ψ2

∫
γ

⟨ψ|e(it−
β
2 )Ĥ |ψ1⟩⟨ψ1|T̂ (0)|ψ2⟩⟨ψ2|e−(it+ β

2 )Ĥ |ψ2⟩⟨ψ2|T̂ †(0)|ψ⟩

=

∫
ψ,ψ1,ψ2

∫
γ

⟨ψ|e(it−
β
2 )Ĥ |ψ1⟩⟨ψ1|ψ2 + γ⟩⟨ψ2 + γ|ψ⟩⟨ψ2|e−(it+ β

2 )Ĥ |ψ2⟩ (16)

=

∫
ψ

⟨ψ|e−( β
2 −it)Ĥ |ψ⟩

∫
ψ2

⟨ψ2|e−( β
2 +it)Ĥ |ψ2⟩

= |Z (β/2 + it)|2 = S2(β/2, t) . (17)

In the calculation above, we have inserted three complete sets of coherent states denoted
by ψ1, ψ2, and ψ3 in equation (14). The integration over α in equation (15) generates the
Grassmann delta function. Finally, the integrations in equation (16) over γ and ψ1 give
identity:∫

γ

∫
ψ1

|ψ1⟩⟨ψ1|ψ2 + γ⟩⟨ψ2 + γ|ψ⟩ =
(∫

ψ1

|ψ1⟩ ⟨ψ1|
)(∫

γ

|ψ2 + γ⟩ ⟨ψ2 + γ|
)
|ψ⟩ = |ψ⟩ .

(18)

This calculation shows that the regularized thermal expectation value of〈
Ûα,γ(t)Ûα,γ(0)

〉
β
, (19)

at inverse temperature β averaged over the states and parameters in the operator Û is
equivalent to SFF at inverse temperature β/2. We can immediately extend this result to
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higher point functions and the corresponding SFF with adjusted inverse temperature. A
useful equation for the generalization is∫

α,γ

⟨ψ|Û(0)eiĤtÛ †(0)|ψ1⟩ = ⟨ψ|ψ1⟩⟨eiĤt⟩. (20)

This equation also arose from the Haar average of the unitary operator employed in Refs.
[9,10]. With equation (20), it is not difficult to generalize the above calculation to 2k-point
correlation functions. The result is∫

ψ

∫
{αj ,γj}

⟨ψ|Û0
1 ρ

1
2k

β Û t2ρ
1
2k

β Û0
3 · · · Û t2k−2ρ

1
2k

β Û0
2k−1ρ

1
2k

β Ŵ2k(t)ρ
1
2k

β |ψ⟩ = |⟨e
(− β

2k+it)Ĥ⟩|2k, (21)

where
ρ

1
2k

β ≡
(
exp(−βĤ)

) 1
2k ,

is the regularized thermal factor,

Ŵ2k−1(t) ≡
(
Û1(t)Û2(t) · · · Û2k−1(t)

)†
, (22)

and we have used superscript to denote the time of the operator insertion and subscript to
denote the parameters (of the operator), e.g. Û t2 ≡ Ûα2,γ2(t). Note that for the higher-point
function, the insertion of the operators is out-of-time-ordered. For example, in the case of
k = 2, the relation is∫

ψ

∫
{αj ,γj}

⟨ψ|Û1(0)ρ
1
4

β Û2(t)ρ
1
4

β Û3(0)ρ
1
4

β Ŵ4(t)ρ
1
4

β |ψ⟩ = |⟨e
(− β

4 +it)Ĥ⟩|4 , (23)

where
Ŵ4(t) ≡

(
Û1(t)Û2(t)Û3(t)

)†
.

Hence the above relation can be interpreted as a connection between a specific kind of out-
of-time-order correlator (OTOC) at inverse temperature β and the spectral form factor at
a reduced inverse temperature.

2.3 Loschmidt Echo
In the previous section, we studied the relationship between the OTOC and SFF. The OTOC
captures the growth of the deviation of a small perturbation on the initial condition. The
SFF captures the characteristic distribution of the spectrum of a chaotic system. It turns
out that these two quantities are also dual to another measurement (for diagnosing chaos)
called Loschmidt Echo, M(t),

M(t) ≡
∣∣∣⟨ψ0| eiĤ2te−iĤ1t |ψ0⟩

∣∣∣2 . (24)

From the definition, it is similar to measuring the deviation of an initial state |ψ0⟩ after a
time evolution forward in time with a Hamiltonian Ĥ1 and then reversing time evolution with
another Hamiltonian Ĥ2. When the two Hamiltonians differ only by a small perturbation

Ĥ2 = Ĥ1 + δĤ M(t) ∼
∣∣∣⟨ψ0| exp(iδĤt) |ψ0⟩

∣∣∣2 , (25)

it measures the deviation of growth. The LE should be related to the OTOC as they capture
similar information.
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Next, we will demonstrate the connection between the OTOC correlators and LE. The
calculation for the fermionic system is in line with the bosonic case [9,10]. Let us consider
a lattice system with k sites equipped with a set of non-trivial operators {Ûj}, j = 1, · · · , k
localized on each site labeled by the subscript (with a tensor product of the identity operator
at other sites). With this setup, let us consider the following 2k-point correlator

GAV,2k =

∫
ψ

∫
U1···Uk

⟨ψ|Û†
1 (t1)Û

†
2 (t2) · · · Û

†
k−1(tk−1)Û

†
k(0)Ûk−1(tk−1) · · · Û1(t1)Ûk(0)|ψ⟩ ,

(26)

where we insert the operator Ûj(tj) localized on the j-th site at time tj . Here we choose
tk−1 > tk−2 > · · · > t1 > tk = 0, which reproduces the same time ordering in the con-
ventional OTOC. Note that we have also used a shorthand notation

∫
U
≡

∫
dÛ to denote

the integration over the operator parameters used in the previous section. We will use a
normalized integration measure such that∫

dÛj(0) = 1. (27)

When k = 1, the correlator is trivial and gives unity. The non-trivial result begins from
k = 2, which takes the form of the standard four-point OTOC:

GAV,4 =

∫
ψ

∫
U1,U2

⟨ψ|Û†
1 (t1)Û

†
2 (0)Û1(t1)Û2(0)|ψ⟩

=

∫
ψ

∫
U1,U2

⟨ψ|eiĤt1Û †
1 (0)e

−iĤt1Û†
2 (0)e

iĤt1Û1(0)e
−iĤt1Û2(0)|ψ⟩

=

∫
ψ,Û2

⟨ψ|eiĤt1
[∫

U1

Û †
1 (0)e

−iĤt1Û†
2 (0)e

iĤt1Û1(0)

]
e−iĤt1Û2(0)|ψ⟩

=

∫
ψ,Û2

⟨ψ|Tr1
[
e−iĤt1Û †

2 (0)e
iĤt1

]
e−iĤt1Û2(0)e

iĤt1 |ψ⟩, (28)

where we replaced the average over the operator Û1 by a trace over site 1 [9,10]. To proceed,
let us assume the total system Hamiltonian takes the form of

Ĥ = Ĥ1 ⊗ Î2 − Î1 ⊗ Ĥ2 +
∑
α

Ĥ ′
α ⊗ Ĥ ′′

α. (29)

The interaction terms are assumed to be random such that a partial trace operation leads
to a sum of operators (denoted as P̂1 and P̂ ′

1 below). For further detail on the properties
of the random interacting Hamiltonian, please refer to Ref. [9]. With this assumption, the
evaluation of trace over site one is:

Tr1

[
e−iĤt1Û†

2 (0)e
iĤt1

]
=

∫
ψ1

⟨ψ1|e−iĤt1Û †
2 (0)e

iĤt1 |ψ1⟩

=
1

N1

∑
P̂1

e−i(Ĥ2+P̂1)t1Û †
2 (0)e

i(Ĥ2+P̂1)t1 , (30)

where ψ1 is the complete set of states in site 1, and the constant N1 is the number of
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operators P̂1. Hence we obtain that:

GAV,4 =
1

N1

∫
ψ1,ψ2

∫
Û2

⟨ψ2|
∑
P̂1,P̂ ′

1

e−i(Ĥ2+P̂1)t1Û †
2 (0)e

i(Ĥ2+P̂1)t1

×
[
⟨ψ1| e−iĤt1Û2(0)e

iĤt1 |ψ1⟩
]
|ψ2⟩

=
1

N2
1

∫
ψ2

∫
Û2

⟨ψ2|
∑
P̂1,P̂ ′

1

e−i(Ĥ2+P̂1)t1Û†
2 (0)e

i(Ĥ2+P̂1)t1e−i(Ĥ2+P̂
′
1)t1Û2(0)

× ei(Ĥ2+P̂
′
1)t1 |ψ2⟩

=
1

N2
1

∫
ψ2

⟨ψ2|
∑
P̂1,P̂ ′

1

e−i(Ĥ2+P̂1)t1

[∫
Û2

Û †
2 (0)e

i(Ĥ2+P̂1)t1e−i(Ĥ2+P̂
′
1)t1Û2(0)

]
× ei(Ĥ2+P̂

′
1)t1 |ψ2⟩

=
1

N2
1

∑
P̂1,P̂ ′

1

∣∣∣∣∫
ψ2

⟨ψ2| ei(Ĥ2+P̂1)t1e−i(Ĥ2+P̂
′
1)t1 |ψ2⟩

∣∣∣∣2 . (31)

We have split the whole system state into the tensor product states in site 1 and site 2,

|ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ ,

from the first to the second line. The averaged four-point correlation function is equivalent
to LE with a summation of different time evolution operators. When applying a late-time
limit, only the greatest exponent will survive. Therefore, we can apply this result to modular
chaos [6] after applying the unitary equivalence [5]. We can also use the approximation of
Ref. [10] to generalize this result to high-point correlators. The calculation is similar to
SFF.

2.4 Field Theory Generalization
It is easy to generalize the above calculations to multi-fermion systems. The corresponding
multi-fermion coherent states and the operators Û are given by:

|ψ⃗⟩ ≡ |ψ1, ψ2, · · · , ψn⟩ = D̂(ψ1, ψ2, · · · , ψn)|⃗0⟩ =
n∏
j=1

(
1− 1

2
ψ∗
jψj − ψj ĉ

†
j

)∣∣∣∣0⃗〉, (32)

Û(0) = Ŝ(0)T̂ (0), Ŝ(0) ≡
n∏
j=1

eiα
∗
j ĉjeiĉ

†
jαj , T̂ (0) ≡

n∏
j=1

eγ
∗
j t̂j−t̂

†
jγj , (33)

where n is the number of fermion fields. The calculation follows similarly as in the single
fermion case.

3 Connection between Time Evolution and Modular Flow
through the TFD State

We will discuss the relevance of the above quantum chaos diagnostic quantities to the emer-
gence of time. In particular, we will motivate the connection between the time evolution
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generated by the subsystem Hamiltonian and the concept of modular flow generated by the
modular Hamiltonian. We will follow the Ref. [5] and demonstrate this connection through
the thermofield double state. The TFD state that we consider is:

|Ψ⟩ ∼
∑
m

e−
β
2EmÛ |m⟩ ⊗ |m⟩ ,

ρTFD = |Ψ⟩ ⟨Ψ| , (34)

where it is up to a normalization constant. The Em is the eigenvalue of Ĥ for the state
|m⟩. The Û is a unitary operator which only acts on the first site. We can use the state for
bosonic and fermionic fields corresponding to a different range of m. The Hamiltonian is
Ĥ = Ĥ0⊗ Î − Î ⊗ Ĥ0 where Î is an identity operator. The two systems do not interact with
each other. With this definition of the TFD state, one can show a relation between the sub-
system Hamiltonian, H0, with the modular Hamiltonian defined through partial trace over
the second site of the TFD density matrix Ĥmod ≡ − lnTr2 ρTFD. For this case, we have
the unitary equivalence in general for the TFD state, Ĥmod = βÛĤ0Û

† [5]. In a quantum
system, the Hamiltonian generates a time evolution of the operators (in the Heisenberg pic-
ture), i.e. Ô(t) = exp(iĤ0t)Ô(0) exp(−iĤ0t). On the other hand, the modular Hamiltonian
allows one to define a modular flow of an operator Ô(s) = exp(iĤmods)Ô(0) exp(−iĤmods).
Using the unitary equivalent relation between the Hamiltonian and modular Hamiltonian,
one can relate the modular flow to the time evolution of the operators by identifying s = t/β.
This identification coincides with the ”Thermal Time Hypothesis” in Ref. [7] where the time
evolution is the modular flow (scaled by the temperature). We will apply this identification
to the above quantum chaos diagnostics and argue how time can emerge from quantum
entanglement.

When considering β = 0, the TFD state is equivalent to summing over a complete basis
(of states), either in the form of eigenstates of the number operator or coherent states,
which we have considered in the previous section. Therefore, we can apply the result of the
previous section to the TFD state. The four-point function for the TFD state is

G4 = ⟨Ψ| Ô1(t1) · · · Ô4(t4) |Ψ⟩ . (35)

One can connect this correlation function to the regularized thermal expectation value con-
sidered in the previous section first by shifting the time parameters as

tj → tj − i
β

4
(2− j), ∀ j = 1, . . . , 4, (36)

and then fix the operators and their insertion time accordingly. We choose:

Ô†
1(t1) = Ô3(t3) = Û1(t),

Ô†
2(t2) = Ô4(t4) = Û2(0).

(37)

Let us recall the corresponding result for the LE in the previous sections, LE is given by

GAV,4 =
1

N2
1

∑
P̂1,P̂ ′

1

∣∣∣∣∫
ψ2

⟨ψ2| ei(Ĥ2+P̂1)t1e−i(Ĥ2+P̂
′
1)t1 |ψ2⟩

∣∣∣∣2 , (38)

expressed in terms of the subsystem Hamiltonian and the physical time parameter. We then
introduce a modular parameter s ≡ t/β and replace the subsystem Hamiltonian with the
modular Hamiltonian in the formula of LE using unitary equivalence. With this replacement,
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one can interpret the LE as generated by the modular Hamiltonian and only depend on the
modular flow parameter. This form of the LE with modular Hamiltonian coincides with the
definition of modular chaos introduced in Ref. [6]. They showed that there exists an upper
bound for modular chaos similar to the case of chaos,

lim
s→∞

d

ds
ln

(∣∣e−iĤmodsei(Ĥmod+δĤmod)s|
)
≤ 2π . (39)

This result allows one to define a modular Lyapunov exponent λmod ≤ 2π. On the other
hand, the L.H.S. of equation (38) is the OTOC with the total Hamiltonian encoding infor-
mation about chaos and is bounded by

lim
t→∞

d

dt
ln(|OTOC|) ≤ 2π

β
, (40)

with the Lyapunov exponent λ ≤ 2π/β. To make our statement more precise, let us consider
that chaos and modular chaos bounds are saturated, i.e. λ = 2π/β and λmod = 2π simulta-
neously. The saturation of two bounds possibly requires one to consider holographic CFTs
(or large N theories) [2,6]. In our case, we did not assume the form of Hamiltonian when
connecting the OTOC to the LE. Hence our argument can be equally applied to holographic
CFTs with a small perturbation parameter (or by the large N techniques) [12,13]. One
example is a spherical entangling surface in CFT, where the exponent of LE saturates the
modular chaos bound [15]. When combining this result with the relation between modular
Hamiltonian and Hamiltonian through unitary equivalence, one can show “Modular Chaos
Bound = Chaos Bound”. We summarize the result as

OTOC equation (38)←−−−−−−−→ LE UE,TTH←−−−−→ LEMH

λ =
2π

β

11111111111111111111 1←−−−−−−−−−−−−−−→ λmod = 2π

time flow “t”
11111111111111111111 1←−−−−−−−−−−−−−−→ modular flow “s” (41)

where UE and TTH denote unitary equivalent and ”Thermal Time Hypothesis”, respectively.
This result also implies the emergence of a time parameter in the dual system. The saturation
of chaos bound implies the existence of the dual AdS Einstein gravity theory [2]. In “Thermal
Time Hypothesis”, the time is state dependent [7]. The unitary equivalence realizes the
emergence of time through Quantum Entanglement. We demonstrate how time possibly
emerges from the modular parameter in Einstein gravity theory. Hence we expect that the
unitary equivalence helps listen to the shape of bulk geometry.

Our study is not only applicable in AdS/CFT correspondence but also to the study of
Quantum Information. The study has applicability to Quantum Entanglement and Quan-
tum Chaos. The first application is the random matrix theory. The dynamics of SFF helps
distinguish the non-integrability and integrability from the spectrum [3]. The second appli-
cation is the classification of quantum states. In Ref. [14], they found that entanglement
entropy is invariant for the TFD state for arbitrary Û . The difference between states with
difference Û , encoded in the topological data such as the Berry phase. It is equivalent to
classifying a state from modular Berry [15] and Berry phases. Our study also helps clar-
ify the relationship between the modular Berry and the Berry phases. Let us consider the
Quantum Modular Geometric Tensor given by [15]

g
(n)
jk =

∑
m ̸=n

⟨n|∂jĤmod|m⟩ ⟨m| ∂kĤmod|n⟩(
E

(n)
mod − E

(m)
mod

)2 , (42)
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where E(n)
mod is the n-th eigenvalue of a modular Hamiltonian. The symmetric part gives

a metric, and the anti-symmetric component provides a Modular Berry Curvature. Us-
ing unitary equivalence, one can obtain the Quantum Geometric Tensor by replacing the
modular Hamiltonian with a Hamiltonian. Now the anti-symmetric component becomes
the Berry Curvature. Therefore, unitary equivalence implies “ Modular Berry Curvature =
Berry Curvature” through the Quantum Modular Geometric Tensor. We can obtain phases
by the integration of the Berry curvatures. Therefore, the modular Berry curvature and
Berry curvature lead to the same phase, and hence ”Modular Berry phase = Berry phase”.
In Ref. [14], the authors only used Û to transform the state but kept the Hamiltonian fixed.
Therefore, a different choice of the unitary operator Û leads to different Berry phases. Hence
one can apply our study to classify quantum states.

3.1 Entanglement Spectrum and Geometry
Different shapes of geometry are necessary to have a distinct entanglement structure. Oth-
erwise, quantum entanglement is not sufficient to determine the geometry.

We can use a formula called eigenvector-eigenvalue identity that connects the eigenvectors
to the eigenvalues of an n× n Hermitian matrix A and its minor Mi2(A) [11]

|ṽi1,i2 |2
n∏

k=1,k ̸=i1

(λi1(A))− λk(A)) =
n−1∏
k=1

(λi1(A)− λk(Mi2)) . (43)

Here ṽi1,i2 is the i2-th component of the normalized eigenvector associated with the i1-th
eigenvalue λi(A) of A. The minor Mi1(A) is a matrix constructed by removing the i1-th
row and column of A and its i2-th eigenvalue is labeled by λi2(Mi1(A)). We adopt the
convention for the eigenvalues

λ1(A) ≤ · · · ≤ λn(A). (44)

When n = 2, the element of the minor is also the eigenvalue. Therefore, it is easier to check
the eigenvector-eigenvalue identity. The same set of eigenvalues (of two matrices) implies
similar eigenvectors (up to a unitary transformation). The eigenvalues and eigenvectors are
one-to-one correspondence (up to a unitary transformation). Taking a two-qubit system as
a simple example. The minor of a modular Hamiltonian is the probability of the spin up or
down. Substituting the minor to entanglement entropy shows partial entanglement (up or
down). Therefore, we expect that the minor is one necessary ingredient of the entanglement
spectrum (for constraining the subsystem Hamiltonian).

For a more general case, one can reconstruct the eigenvectors of a modular Hamiltonian
from the spectrum and its minor. Hence the entanglement spectrum from the modular
Hamiltonian provides a unique constraint on the Hamiltonian.

4 Outlook
We worked on some interesting topics related to unitary equivalence, quantum chaos di-
agnostics, the AdS/CFT correspondence, and the connection between entanglement and
spacetime geometry. These are active areas of research with significant implications in
theoretical physics. The unitary equivalence [5] appears to be a key concept in our work.
We have extended the studies on the dual of the SFF [12,13] and the LE [9,10] to include
fermionic systems. By generalizing these studies to fermions, we are expanding the appli-
cability of these concepts and potentially gaining new insights into the emergence of time
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and the Thermal Time Hypothesis. The issue of unbounded operators in field theories by
noting that they appear in the exponent of exponential functions in our study. This al-
lows for the generalization of our results to field theory and supports the application of the
unitary equivalence to arbitrary systems. Furthermore, the relationship between the ”Mod-
ular Chaos Bound” and the ”Chaos Bound”, suggests that the unitary equivalence provides
additional constraints. This finding could have significant implications for understanding
chaos and its bounds in various physical systems.

Moving on to the connection between entanglement and spacetime geometry, we explore
the entanglement structure and its relationship to the underlying geometry. The entangle-
ment spectrum, consisting of the eigenvalues of the reduced density matrix, has been pro-
posed as a valuable source of information about the system’s geometry. The reconstruction of
the modular Hamiltonian from the entanglement spectrum using the eigenvector-eigenvalue
identity allows for the inference of the entanglement structure and, in some cases, even the
recovery of the full geometry.
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