Exploring the Parameter Space of Inflation Model on the Brane and its Compatibility with the Swampland Conjectures

Document Type : Regular article

Authors

1 Department of Physics, Faculty of Basic Sciences, University of Mazandaran P. O. Box 47416-95447, Babolsar, Iran.

2 Department of Physics, University of Mazandaran, P. O. Box 47416-95447, Babolsar, Iran

3 Department of Physics, Faculty of Basic Sciences, University of Mazandaran , Babolsar, Iran

Abstract

In recent years, inflationary models have been studied from different perspectives using different conditions. Now, in this paper, we want to investigate the inverse monomial Inflation$(IMI)$ on the brane. We limit our results to the potentials of the form $\frac{M^{4+\sigma}}{\phi^{\sigma}}$, where${M, \sigma}$are constants. We calculate some cosmological parameters and then we investigate the satisfaction of the model with some conjectures of the swampland program. We will check the model's compatibility with the refined dS swampland conjecture(RDSSC), further refining the de Sitter swampland conjecture (FRSDC), scalar weak gravity (SWGC), and strong scalar weak gravity conjecture (SSWGC). Despite the incompatibility with (DSC), We find a specific region of compatibility with other ones which means it satisfied the (FRDSSC) for example with (a=0.982873,\hspace{0.1cm} b=0.017127,\hspace{0.1cm} q=2.2). Also, the model is compatible with the (SWGC) with the ($\phi\leq \sigma+2$) condition and consistent with the (SSWGC) with the ($\phi \leq \sqrt{(\sigma+2)(\sigma+1)}$) condition. Since inverse monomial Inflation(IMI) on the brane could satisfy some swampland conjecture simultaneously, it has the potential to be a “real” inflation model of the universe.

Keywords

Main Subjects

 

Article PDF

 [1] D. Harlow, B. Heidenreich, M. Reece, and T. Rudelius, ”The Weak Gravity Conjecture: A Review”, (2022). DOI: 10.1103/RevModPhys.95.035003 [arXiv:2201.08380]
[2] J. Sadeghi, B. Pourhassan, S. N. Gashti, and S. Upadhyay, “Weak Gravity Conjecture, Black Branes and Violations of Universal Thermodynamic Relation”, Annals of Physics 447(1), 169168 (2022). DOI: 10.1016/j.aop.2022.169168
[3] C. Cheung and Grant N. Remmen, “Naturalness and the Weak Gravity Conjecture”, Phys. Rev. Lett. 113, 051601 (2014). DOI: 10.1103/PhysRevLett.113.051601
[4] J. Sadeghi, S. Noori Gashti, I. Sakalli, and B. Pourhassan, “Weak Gravity Conjecture of Charged-Rotating-AdS Black Hole Surrounded by Quintessence and String Cloud”, NPB (2023). DOI: 10.48550/arXiv.2011.05109
[5] Y. Hamada, T. Noumi, and G. Shiu, “Weak Gravity Conjecture from Unitarity and Causality”, Phys. Rev. Lett. 123, 051601 (2019). DOI: 10.1103/PhysRevLett.123.051601
[6] J. Sadeghi, M. Shokri, M. R. Alipour, and S. Noori Gashti, “Weak Gravity Conjecture from Conformal Field Theory: A Challenge from Hyperscaling Violating and Kerr-Newman-AdS Black Holes”, Chinese Physics C 47(1), 015103 (2022). DOI: 10.1088/1674-1137/ac957b
[7] L. Ma, Y. Pang, and H. Lü, “α-corrections to near extremal dyonic strings and weak gravity conjecture”, Journal of High Energy Physics 2022, 157 (2022). DOI: 10.1007/JHEP01%282022%29157
[8] J. Sadeghi, M. R. Alipour, and S. N. Gashti, “Strong Cosmic Censorship in light of Weak Gravity Conjecture for Charged Black Holes”, Journal of High Energy Physics 2023(2), 1 (2023). DOI: 10.1007/JHEP02%282023%29236
[9] J. Sadeghi, B. Pourhassan, S. N. Gashti, I. Sakallı, and M. R. Alipour, “de Sitter Swampland Conjecture in String Field Inflation”, The European Physical Journal C 83(635), 2023 (2023). DOI: 10.1140/epjc/s10052-023-11822-2
[10] M. W. Hossain, et al. “Variable gravity: A suitable framework for quintessential inflation”, Physical Review D 90(2), 023512 (2014). DOI: 10.1103/PhysRevD.90.023512
[11] H. Sheikhahmadi, et al. “Hamilton-Jacobi formalism for inflation with non-minimal derivative coupling”, Journal of Cosmology and Astroparticle Physics 2016(10), 021 (2016). DOI: 10.1088/1475-7516/2016/10/021
[12] S. Karydas, P. Eleftherios, and N. S. Emmanuel, “Successful Higgs inflation from combined nonminimal and derivative couplings”, Physical Review D 104(2), 023530 (2021). DOI: 10.1103/PhysRevD.104.023530
[13] E. Palti, “The swampland: introduction and review”, Fortsch. Phys. 67(6), 1900037 (2019). DOI: 10.1002/prop.201900037
[14] J. Sadeghi, B. Pourhassan, S. Noori Gashti, S. Upadhyay, and E. Naghd Mezerji, “The emergence of universal relations in the AdS black holes thermodynamics”, Physica Scripta 98(2), 025305 (2023). DOI: 10.1088/1402-4896/acb40b
[15] N. A. Hamed, L. Motl, and A. Nicolis, “The string landscape, black holes and gravity as the weakest force”, JHEP 0706, 060 (2007). DOI: 10.1088/1126-6708/2007/06/060
[16] S. N. Gashti, J. Sadeghi, and B. Pourhassan, “Pleasant behavior of swampland conjectures in the face of specific inflationary models”, Astroparticle Physics 139, 102703 (2022). DOI: 10.1016/j.astropartphys.2022.102703
[17] Y. Akrami, R. Kallosh, A. Linde, and V. Vardanyan, “The landscape, the swampland and the era of precision cosmology”, Fortsch. Phys. 67(1-2), 1800075 (2019). DOI: 10.1002/prop.201800075
[18] T. Brennan, F. Carta, and C. Vafa, “The string landscape, the swampland, and the missing corner”, PoS TASI2017, 015 (2017). DOI: 10.48550/arXiv.1711.00864
[19] H. Murayama, M. Yamazaki, and T. Yanagida, “Do we live in the swampland?”, JHEP 12, 032 (2018). DOI: 10.1007/JHEP12%282018%29032
[20] C. Vafa, “The string landscape and the swampland”, (2005). DOI: 10.48550/arXiv.hepth/0509212 [arXiv:hep-the/0509212].
[21] E. Palti, “The weak gravity conjecture and scalar fields”, J. High Energy Phys. 8, 034 (2017). DOI: 10.1007/JHEP08%282017%29034
[22] K. Kooner, S. Parameswaran, and I. Zavala, “Warping the weak gravity conjecture”, Phys. Lett. B 759, 402409 (2016). DOI: 10.1016/j.physletb.2016.05.082
[23] M. Montero, G. Shiu, and P. Soler, “The weak gravity conjecture in three dimensions”, JHEB 2016, 159 (2016). DOI: 10.1007/JHEP10%282016%29159
[24] P. Saraswat, “Weak gravity conjecture and effective field theory”, Phys. Rev. D 95, 025013 (2017). DOI: 10.1103/PhysRevD.95.025013
[25] Y. Akayama, and Y. Nomura, “Weak gravity conjecture in the AdS/CFT correspondence”, Phys. Rev. D 92, 126006 (2015). DOI: 10.1103/PhysRevD.92.126006
[26] J. Sadeghi, S. Noori Gashti, and E. Naghd Mezerji, “The investigation of universal relation between corrections to entropy and extremality bounds with verification WGC”, Phys. Dark Univ 30, 100626 (2020). DOI: 10.1016/j.dark.2020.100626
[27] J. Sadeghi, E. N. Mezerji, and S. N. Gashti, “Study of some cosmological parameters in logarithmic corrected gravitational model with swampland conjectures”, Modern Physics Letters A 36(05), 2150027 (2021). DOI: 10.1142/S0217732321500279
[28] J. Sadeghi, and S. N. Gashti, “Anisotropic constant-roll inflation with noncommutative model and swampland conjectures”, The European Physical Journal C 81, 1 (2021). DOI: 10.1140/epjc/s10052-021-09103-x
[29] M. van Beest, J. Calderón-Infante, D. Mirfendereski, and I. Valenzuela, “Lectures on the swampland program in string compactifications”, Physics Reports, 989, 1 (2022). DOI: 10.1016/j.physrep.2022.09.002
[30] S. N. Gashti, J. Sadeghi, and M. R. Alipour, “Further Refining Swampland dS Conjecture in Mimetic f (G) Gravity”, IJMPD (2023). DOI: 10.1142/S0218271823500116
[31] D. Andriot, and C. Roupec, “Further Refining the de Sitter Swampland Conjecture”, Fortschritte Phys. 67, 1800105 (2019). DOI: 10.1002/prop.201800105
[32] S. N. Gashti, “Two-field inflationary model and swampland de Sitter conjecture”, Journal of Holography Applications in Physics 2(1), 13 (2022). DOI: 10.22128/JHAP.2021.452.1002
[33] J. Sadeghi, B. Pourhassan, S. N. Gashti, and S. Upadhyay, “Swampland conjecture and inflation model from brane perspective”, Physica Scripta 96(12), 125317 (2021). DOI: 10.1088/1402-4896/ac39bc
[34] H. Ooguri, E. Palti, G. Shiu, and C. Vafa, “Distance and de Sitter conjectures on the Swampland”, Phys. Lett. 788, 180 (2019). DOI: 10.1016/j.physletb.2018.11.018
[35] J. Sadeghi, B. Pourhassan, S. Noori Gashti, E. Naghd Mezerji, and A. Pasqua, “Cosmic Evolution of the Logarithmic f(R) Model and the dS Swampland Conjecture”, Universe 8(12), 623 (2022). DOI: 10.3390/universe8120623
[36] J. Sadeghi, S. Noori Gashti, and M. R. Alipour, “Notes on further refining de Sitter swampland conjecture with inflationary models”, Chinese Journal of Physics 79, 490 (2022). DOI: 10.1016/j.cjph.2022.09.015
[37] S. N. Gashti, J. Sadeghi, S. Upadhyay, and M. R. Alipour, “Swampland dS conjecture in mimetic f (R, T) gravity”, Communications in Theoretical Physics 74(8), 085402 (2022). DOI: 10.1088/1572-9494/ac7a1f
[38] Y. Liu, “Higgs inflation and its extensions and the further refining dS swampland conjecture”, Eur. Phys. J. C 82, 1052 (2022). DOI: 10.1140/epjc/s10052-021-09940-w
[39] S. N. Gashti, and J. Sadeghi, “Refined swampland conjecture in warm vector hybrid inflationary scenario”, The European Physical Journal Plus 137(6), 1 (2022). DOI: 10.1140/epjp/s13360-022-02961-8
[40] Y. Liu, “Higgs inflation and scalar weak gravity conjecture”, Eur. Phys. J. C 81, 1122 (2022). DOI: 10.1140/epjc/s10052-022-10993-8
[41] J. Sadeghi, M. R. Alipour, and S. Noori Gashti, “Scalar Weak Gravity Conjecture in Super Yang-Mills Inflationary Model”, Universe 8, 621 (2022). DOI: 10.48550/arXiv.2208.13093
[42] E. Gonzalo, and L. Ibáñez, “A Strong Scalar Weak Gravity Conjecture and some implications”, J. High Energy Phys. 8, 118 (2019). DOI: 10.1007/JHEP08%282019%29118
[43] J. Sadeghi, and S. N. Gashti, “Investigating the logarithmic form of f(R) gravity model from brane perspective and swampland criteria”, Pramana 95 (198) (2022). DOI: 10.1007/s12043-021-02234-6
[44] J. Yuennan, P. Channuie, “Composite Inflation and further refining dS swampland conjecture”, Nuclear Physics B 986, 116033 (2023). DOI: 10.1016/j.nuclphysb.2022.116033
[45] J. Sadeghi, S. N. Gashti, and F. Darabi, “Swampland conjectures in hybrid metric-Palatini gravity, Physics of the Dark Universe”, 101090 (2022). DOI: 10.1016/j.dark.2022.101090
[46] H. Ooguri, C. Vafa, “On the Geometry of the String Landscape and the Swampland”, Nucl. Phys. B, 766, 21 (2007). DOI: 10.1016/j.nuclphysb.2006.10.033
[47] S. N. Gashti, J. Sadeghi, “Constraints on cosmological parameters in light of the scalar– tensor theory of gravity and swampland conjectures”, Modern Physics Letters A 37(18), 2250110 (2022). DOI: 10.1142/S0217732322501103
[48] S. Noori Gashti, and J. Sadeghi, “Inflation, swampland and landscape”, International Journal of Modern Physics A 37(04), 2250006 (2022). DOI: 10.1142/S0217751X22500063
[49] G. Obied, H. Ooguri, L. Spodyneiko, and C. Vafa, “de Sitter Space and the Swampland”, (2018). DOI: 10.48550/arXiv.1806.08362 [arXiv:1806.08362].
[50] W. H. Kinney, S. Vagnozzi, and L. Visinelli, “The zoo plot meets the swampland: mutual (in) consistency of single-field inflation, string conjectures, and cosmological data”, Class. Quant. Grav. 36, 117001 (2019). DOI: 10.1088/1361-6382/ab1d87
[51] A. Achcarro, and G. A. Palma, “The string swampland constraints require multi-field inflation”, JCAP 02, 041 (2019). DOI: 10.1088/1475-7516/2019/02/041
[52] S. K. Garg, and C. Krishnan, “Bounds on slow roll and the de Sitter swampland”, JHEP 1, 075 (2019). DOI: 10.1007/JHEP11%282019%29075
[53] H. Ooguri, and C. Vafa, “Non-supersymmetric AdS and the Swampland”, Adv. Theor. Math. Phys. 21, 1787 (2017). DOI: 10.48550/arXiv.1610.01533
[54] P. Agrawal, G. Obied, P. J. Steinhardt, and C. Vafa, “On the cosmological implications of the string swampland”, Phys. Lett. B 784, 271 (2018). DOI: 10.1016/j.physletb.2018.07.040
[55] A. Kehagias, and A. Riotto, “A note on Inflation and the Swampland”, Fortsch. Phys. 66(10), 1800052 (2018). DOI: 10.1103/PhysRevD.99.083510
[56] S. Brahma, and M. Wali Hossain, “Avoiding the string swampland in single-field inflation: Excited initial states”, JHEP 03, 006 (2019). DOI: 10.1007/JHEP03%282019%29006
[57] S. Das, “Note on single-field inflation and the swampland criteria”, Phys. Rev. D 99(8), 083510 (2019). DOI: 10.1103/PhysRevD.99.083510
[58] M. Sasaki, T. Shiromizu, and K. Maeda, “Gravity, stability, and energy conservation on the Randall-Sundrum brane world”, Physical Review D 62(2), 024008 (2000). DOI: 10.1103/PhysRevD.62.024008
[59] P. Bowcock, C. Christos, and G. Ruth, “General brane cosmologies and their global spacetime structure”, Classical and Quantum Gravity 17(22), 4745 (2000). DOI: 10.1088/0264-9381/17/22/313
[60] P. S. Apostolopoulos, et al. “Mirage effects on the brane”, Physical Review D Particles, Fields, Gravitation, and Cosmology 72(4), 044013 (2005). DOI: 10.1103/PhysRevD.72.044013
[61] F. K. Diakonos, and E. N. Saridakis, “Statistical approach to the cosmological-constant problem on brane worlds”, Journal of Cosmology and Astroparticle Physics 2009(02), 030 (2009). DOI: 10.1088/1475-7516/2009/02/030
[62] S. D. Odintsov, V. K. Oikonomou, and Emmanuel N. Saridakis, “Superbounce and loop quantum ekpyrotic cosmologies from modified gravity: F (R), F (G) and F (T) theories”, Annals of Physics 363, 141 (2015). DOI: 10.48550/arXiv.1501.06591
[63] J. M. Cline, C. Grojean, and G. Servant, “Cosmological expansion in the presence of an extra dimension”, Phys. Rev. Lett. 83, 4245 (1999). DOI: 10.1103/PhysRevLett.83.4245
[64] C. Csaki, M. Graesser, C. F. Kolda, and J. Terning, “Cosmology of one extra dimension with localized gravity”, Phys. Lett. B 462, 34 (1999). DOI: 10.1016/S0370- 2693%2899%2900896-5
[65] P. Binetruy, C. Deffayet, U. Ellwanger, and D. Langlois, “Brane cosmological evolution in a bulk with cosmological constant”, Phys. Lett. B 477, 285 (2000). DOI: 10.1016/S0370-2693%2800%2900204-5
[66] K. Freese, and M. Lewis, “Cardassian expansion: a model in which the universe is flat, matter dominated, and accelerating”, Phys. Lett. B 540, 1 (2002). DOI: 10.1016/S0370- 2693%2802%2902122-6
[67] R. Maartens, D. Wands, B. A. Bassett, and I. Heard, “Chaotic inflation on the brane”, Phys. Rev. D 62, 041301 (2000). DOI: 10.1103/PhysRevD.62.041301
[68] M. Jerome, R. Christophe, and V. Vincent, “Encyclopædia Inflationaris”, Phys. Dark Univ. 5(6), 75 (2014). DOI: 10.48550/arXiv.1303.3787
[69] D. Langlois, R. Maartens, and D. Wands, “Gravitational waves from inflation on the brane”, Phys. Lett. B 489, 259 (2000). DOI: 10.1016/S0370-2693%2800%2900957-6
[70] M. C. Bento, R. G. Felipe, and N. M. C. Santos, “Brane assisted quintessential inflation with transient acceleration”, Phys. Rev. D 77, 123512 (2008). DOI: 10.1103/PhysRevD.77.123512
[71] H. Es-sobbahi, and M. Nach, “On braneworld inverse power-law inflation”, International Journal of Modern Physics A 33(10), 1850058 (2018). DOI: 10.1142/S0217751X18500586
[72] K. Ichiki, et al. “Observational constraints on dark radiation in brane cosmology”, Physical Review D 66(4), 043521 (2002). DOI: 10.1103/PhysRevD.66.043521
[73] N. Sasankan, et al. “New observational limits on dark radiation in braneworld cosmology”, Physical Review D 95(8), 083516 (2017). DOI: 10.1103/PhysRevD.95.083516
[74] R. Maartens, et al. “Chaotic inflation on the brane”, Physical Review D 62(4), 041301 (2000). DOI: 10.1103/PhysRevD.62.041301
[75] Y. Akrami et al, “Planck 2018 results-X. Constraints on inflation”, A&A 641, A10 (2020). DOI: 10.1051/0004-6361/201833887
[76] G. Huey and J. E. Lidsey, “Inflation, braneworlds and quintessence”, Phys. Lett. B 514, 217 (2001). DOI: 10.1016/S0370-2693%2801%2900808-5
[77] E. J. Copeland, A. R. Liddle and J. E. Lidsey, “Steep inflation: ending braneworld inflation by gravitational particle production”, Phys. Rev. D 64, 023509 (2001). DOI: 10.1103/PhysRevD.64.023509
[78] G. Huey, and J. E. Lidsey, “Inflation, braneworlds and quintessence”, Physics Letters B 514(3-4), 217 (2001). DOI: 10.1016/S0370-2693
[79] E. J. Copeland, R. L. Andrew, and E. L. James, “Steep inflation: Ending braneworld inflation by gravitational particle production”, Physical Review D 64(2), 023509 (2001). DOI: 10.1103/PhysRevD.64.023509
[80] L. R. Abramo and F. Finelli, “Cosmological dynamics of the tachyon with an inverse power-law potential”, Phys. Lett. B 575, 165 (2003). DOI: 10.1016/j.physletb.2003.09.065
[81] C. Q. Geng, et al. “Quintessential inflation with canonical and noncanonical scalar fields and Planck 2015 results”, Physical Review D 92(2), 023522 (2015). DOI: 10.1103/PhysRevD.92.023522
[82] C. Q. Geng, et al. “Observational constraints on successful model of quintessential Inflation”, Journal of Cosmology and Astroparticle Physics 2017(06), 011 (2017). DOI: 10.1088/1475-7516/2017/06/011
[83] S. Lola, L. Andreas, and N. S. Emmanuel, “Inflation with non-canonical scalar fields revisited”, The European Physical Journal C 81(8), 719 (2021). DOI: 10.1140/epjc/s10052-021-09516-8
Volume 4, Issue 3
September 2024
Pages 35-50
  • Receive Date: 12 July 2024
  • Revise Date: 19 August 2024
  • Accept Date: 20 September 2024