[1] D. Harlow, B. Heidenreich, M. Reece, and T. Rudelius, ”The Weak Gravity Conjecture: A Review”, (2022). DOI: 10.1103/RevModPhys.95.035003 [arXiv:2201.08380]
[2] J. Sadeghi, B. Pourhassan, S. N. Gashti, and S. Upadhyay, “Weak Gravity Conjecture, Black Branes and Violations of Universal Thermodynamic Relation”, Annals of Physics 447(1), 169168 (2022). DOI: 10.1016/j.aop.2022.169168
[3] C. Cheung and Grant N. Remmen, “Naturalness and the Weak Gravity Conjecture”, Phys. Rev. Lett. 113, 051601 (2014). DOI: 10.1103/PhysRevLett.113.051601
[4] J. Sadeghi, S. Noori Gashti, I. Sakalli, and B. Pourhassan, “Weak Gravity Conjecture of Charged-Rotating-AdS Black Hole Surrounded by Quintessence and String Cloud”, NPB (2023). DOI: 10.48550/arXiv.2011.05109
[5] Y. Hamada, T. Noumi, and G. Shiu, “Weak Gravity Conjecture from Unitarity and Causality”, Phys. Rev. Lett. 123, 051601 (2019). DOI: 10.1103/PhysRevLett.123.051601
[6] J. Sadeghi, M. Shokri, M. R. Alipour, and S. Noori Gashti, “Weak Gravity Conjecture from Conformal Field Theory: A Challenge from Hyperscaling Violating and Kerr-Newman-AdS Black Holes”, Chinese Physics C 47(1), 015103 (2022). DOI: 10.1088/1674-1137/ac957b
[7] L. Ma, Y. Pang, and H. Lü, “α′-corrections to near extremal dyonic strings and weak gravity conjecture”, Journal of High Energy Physics 2022, 157 (2022). DOI: 10.1007/JHEP01%282022%29157
[8] J. Sadeghi, M. R. Alipour, and S. N. Gashti, “Strong Cosmic Censorship in light of Weak Gravity Conjecture for Charged Black Holes”, Journal of High Energy Physics 2023(2), 1 (2023). DOI: 10.1007/JHEP02%282023%29236
[9] J. Sadeghi, B. Pourhassan, S. N. Gashti, I. Sakallı, and M. R. Alipour, “de Sitter Swampland Conjecture in String Field Inflation”, The European Physical Journal C 83(635), 2023 (2023). DOI: 10.1140/epjc/s10052-023-11822-2
[10] M. W. Hossain, et al. “Variable gravity: A suitable framework for quintessential inflation”, Physical Review D 90(2), 023512 (2014). DOI: 10.1103/PhysRevD.90.023512
[11] H. Sheikhahmadi, et al. “Hamilton-Jacobi formalism for inflation with non-minimal derivative coupling”, Journal of Cosmology and Astroparticle Physics 2016(10), 021 (2016). DOI: 10.1088/1475-7516/2016/10/021
[12] S. Karydas, P. Eleftherios, and N. S. Emmanuel, “Successful Higgs inflation from combined nonminimal and derivative couplings”, Physical Review D 104(2), 023530 (2021). DOI: 10.1103/PhysRevD.104.023530
[13] E. Palti, “The swampland: introduction and review”, Fortsch. Phys. 67(6), 1900037 (2019). DOI: 10.1002/prop.201900037
[14] J. Sadeghi, B. Pourhassan, S. Noori Gashti, S. Upadhyay, and E. Naghd Mezerji, “The emergence of universal relations in the AdS black holes thermodynamics”, Physica Scripta 98(2), 025305 (2023). DOI: 10.1088/1402-4896/acb40b
[15] N. A. Hamed, L. Motl, and A. Nicolis, “The string landscape, black holes and gravity as the weakest force”, JHEP 0706, 060 (2007). DOI: 10.1088/1126-6708/2007/06/060
[16] S. N. Gashti, J. Sadeghi, and B. Pourhassan, “Pleasant behavior of swampland conjectures in the face of specific inflationary models”, Astroparticle Physics 139, 102703 (2022). DOI: 10.1016/j.astropartphys.2022.102703
[17] Y. Akrami, R. Kallosh, A. Linde, and V. Vardanyan, “The landscape, the swampland and the era of precision cosmology”, Fortsch. Phys. 67(1-2), 1800075 (2019). DOI: 10.1002/prop.201800075
[18] T. Brennan, F. Carta, and C. Vafa, “The string landscape, the swampland, and the missing corner”, PoS TASI2017, 015 (2017). DOI: 10.48550/arXiv.1711.00864
[19] H. Murayama, M. Yamazaki, and T. Yanagida, “Do we live in the swampland?”, JHEP 12, 032 (2018). DOI: 10.1007/JHEP12%282018%29032
[20] C. Vafa, “The string landscape and the swampland”, (2005). DOI: 10.48550/arXiv.hepth/0509212 [arXiv:hep-the/0509212].
[21] E. Palti, “The weak gravity conjecture and scalar fields”, J. High Energy Phys. 8, 034 (2017). DOI: 10.1007/JHEP08%282017%29034
[22] K. Kooner, S. Parameswaran, and I. Zavala, “Warping the weak gravity conjecture”, Phys. Lett. B 759, 402409 (2016). DOI: 10.1016/j.physletb.2016.05.082
[23] M. Montero, G. Shiu, and P. Soler, “The weak gravity conjecture in three dimensions”, JHEB 2016, 159 (2016). DOI: 10.1007/JHEP10%282016%29159
[24] P. Saraswat, “Weak gravity conjecture and effective field theory”, Phys. Rev. D 95, 025013 (2017). DOI: 10.1103/PhysRevD.95.025013
[25] Y. Akayama, and Y. Nomura, “Weak gravity conjecture in the AdS/CFT correspondence”, Phys. Rev. D 92, 126006 (2015). DOI: 10.1103/PhysRevD.92.126006
[26] J. Sadeghi, S. Noori Gashti, and E. Naghd Mezerji, “The investigation of universal relation between corrections to entropy and extremality bounds with verification WGC”, Phys. Dark Univ 30, 100626 (2020). DOI: 10.1016/j.dark.2020.100626
[27] J. Sadeghi, E. N. Mezerji, and S. N. Gashti, “Study of some cosmological parameters in logarithmic corrected gravitational model with swampland conjectures”, Modern Physics Letters A 36(05), 2150027 (2021). DOI: 10.1142/S0217732321500279
[28] J. Sadeghi, and S. N. Gashti, “Anisotropic constant-roll inflation with noncommutative model and swampland conjectures”, The European Physical Journal C 81, 1 (2021). DOI: 10.1140/epjc/s10052-021-09103-x
[29] M. van Beest, J. Calderón-Infante, D. Mirfendereski, and I. Valenzuela, “Lectures on the swampland program in string compactifications”, Physics Reports, 989, 1 (2022). DOI: 10.1016/j.physrep.2022.09.002
[30] S. N. Gashti, J. Sadeghi, and M. R. Alipour, “Further Refining Swampland dS Conjecture in Mimetic f (G) Gravity”, IJMPD (2023). DOI: 10.1142/S0218271823500116
[31] D. Andriot, and C. Roupec, “Further Refining the de Sitter Swampland Conjecture”, Fortschritte Phys. 67, 1800105 (2019). DOI: 10.1002/prop.201800105
[32] S. N. Gashti, “Two-field inflationary model and swampland de Sitter conjecture”, Journal of Holography Applications in Physics 2(1), 13 (2022). DOI: 10.22128/JHAP.2021.452.1002
[33] J. Sadeghi, B. Pourhassan, S. N. Gashti, and S. Upadhyay, “Swampland conjecture and inflation model from brane perspective”, Physica Scripta 96(12), 125317 (2021). DOI: 10.1088/1402-4896/ac39bc
[34] H. Ooguri, E. Palti, G. Shiu, and C. Vafa, “Distance and de Sitter conjectures on the Swampland”, Phys. Lett. 788, 180 (2019). DOI: 10.1016/j.physletb.2018.11.018
[35] J. Sadeghi, B. Pourhassan, S. Noori Gashti, E. Naghd Mezerji, and A. Pasqua, “Cosmic Evolution of the Logarithmic f(R) Model and the dS Swampland Conjecture”, Universe 8(12), 623 (2022). DOI: 10.3390/universe8120623
[36] J. Sadeghi, S. Noori Gashti, and M. R. Alipour, “Notes on further refining de Sitter swampland conjecture with inflationary models”, Chinese Journal of Physics 79, 490 (2022). DOI: 10.1016/j.cjph.2022.09.015
[37] S. N. Gashti, J. Sadeghi, S. Upadhyay, and M. R. Alipour, “Swampland dS conjecture in mimetic f (R, T) gravity”, Communications in Theoretical Physics 74(8), 085402 (2022). DOI: 10.1088/1572-9494/ac7a1f
[38] Y. Liu, “Higgs inflation and its extensions and the further refining dS swampland conjecture”, Eur. Phys. J. C 82, 1052 (2022). DOI: 10.1140/epjc/s10052-021-09940-w
[39] S. N. Gashti, and J. Sadeghi, “Refined swampland conjecture in warm vector hybrid inflationary scenario”, The European Physical Journal Plus 137(6), 1 (2022). DOI: 10.1140/epjp/s13360-022-02961-8
[40] Y. Liu, “Higgs inflation and scalar weak gravity conjecture”, Eur. Phys. J. C 81, 1122 (2022). DOI: 10.1140/epjc/s10052-022-10993-8
[41] J. Sadeghi, M. R. Alipour, and S. Noori Gashti, “Scalar Weak Gravity Conjecture in Super Yang-Mills Inflationary Model”, Universe 8, 621 (2022). DOI: 10.48550/arXiv.2208.13093
[42] E. Gonzalo, and L. Ibáñez, “A Strong Scalar Weak Gravity Conjecture and some implications”, J. High Energy Phys. 8, 118 (2019). DOI: 10.1007/JHEP08%282019%29118
[43] J. Sadeghi, and S. N. Gashti, “Investigating the logarithmic form of f(R) gravity model from brane perspective and swampland criteria”, Pramana 95 (198) (2022). DOI: 10.1007/s12043-021-02234-6
[44] J. Yuennan, P. Channuie, “Composite Inflation and further refining dS swampland conjecture”, Nuclear Physics B 986, 116033 (2023). DOI: 10.1016/j.nuclphysb.2022.116033
[45] J. Sadeghi, S. N. Gashti, and F. Darabi, “Swampland conjectures in hybrid metric-Palatini gravity, Physics of the Dark Universe”, 101090 (2022). DOI: 10.1016/j.dark.2022.101090
[46] H. Ooguri, C. Vafa, “On the Geometry of the String Landscape and the Swampland”, Nucl. Phys. B, 766, 21 (2007). DOI: 10.1016/j.nuclphysb.2006.10.033
[47] S. N. Gashti, J. Sadeghi, “Constraints on cosmological parameters in light of the scalar– tensor theory of gravity and swampland conjectures”, Modern Physics Letters A 37(18), 2250110 (2022). DOI: 10.1142/S0217732322501103
[48] S. Noori Gashti, and J. Sadeghi, “Inflation, swampland and landscape”, International Journal of Modern Physics A 37(04), 2250006 (2022). DOI: 10.1142/S0217751X22500063
[49] G. Obied, H. Ooguri, L. Spodyneiko, and C. Vafa, “de Sitter Space and the Swampland”, (2018). DOI: 10.48550/arXiv.1806.08362 [arXiv:1806.08362].
[50] W. H. Kinney, S. Vagnozzi, and L. Visinelli, “The zoo plot meets the swampland: mutual (in) consistency of single-field inflation, string conjectures, and cosmological data”, Class. Quant. Grav. 36, 117001 (2019). DOI: 10.1088/1361-6382/ab1d87
[51] A. Achcarro, and G. A. Palma, “The string swampland constraints require multi-field inflation”, JCAP 02, 041 (2019). DOI: 10.1088/1475-7516/2019/02/041
[52] S. K. Garg, and C. Krishnan, “Bounds on slow roll and the de Sitter swampland”, JHEP 1, 075 (2019). DOI: 10.1007/JHEP11%282019%29075
[53] H. Ooguri, and C. Vafa, “Non-supersymmetric AdS and the Swampland”, Adv. Theor. Math. Phys. 21, 1787 (2017). DOI: 10.48550/arXiv.1610.01533
[54] P. Agrawal, G. Obied, P. J. Steinhardt, and C. Vafa, “On the cosmological implications of the string swampland”, Phys. Lett. B 784, 271 (2018). DOI: 10.1016/j.physletb.2018.07.040
[55] A. Kehagias, and A. Riotto, “A note on Inflation and the Swampland”, Fortsch. Phys. 66(10), 1800052 (2018). DOI: 10.1103/PhysRevD.99.083510
[56] S. Brahma, and M. Wali Hossain, “Avoiding the string swampland in single-field inflation: Excited initial states”, JHEP 03, 006 (2019). DOI: 10.1007/JHEP03%282019%29006
[57] S. Das, “Note on single-field inflation and the swampland criteria”, Phys. Rev. D 99(8), 083510 (2019). DOI: 10.1103/PhysRevD.99.083510
[58] M. Sasaki, T. Shiromizu, and K. Maeda, “Gravity, stability, and energy conservation on the Randall-Sundrum brane world”, Physical Review D 62(2), 024008 (2000). DOI: 10.1103/PhysRevD.62.024008
[59] P. Bowcock, C. Christos, and G. Ruth, “General brane cosmologies and their global spacetime structure”, Classical and Quantum Gravity 17(22), 4745 (2000). DOI: 10.1088/0264-9381/17/22/313
[60] P. S. Apostolopoulos, et al. “Mirage effects on the brane”, Physical Review D Particles, Fields, Gravitation, and Cosmology 72(4), 044013 (2005). DOI: 10.1103/PhysRevD.72.044013
[61] F. K. Diakonos, and E. N. Saridakis, “Statistical approach to the cosmological-constant problem on brane worlds”, Journal of Cosmology and Astroparticle Physics 2009(02), 030 (2009). DOI: 10.1088/1475-7516/2009/02/030
[62] S. D. Odintsov, V. K. Oikonomou, and Emmanuel N. Saridakis, “Superbounce and loop quantum ekpyrotic cosmologies from modified gravity: F (R), F (G) and F (T) theories”, Annals of Physics 363, 141 (2015). DOI: 10.48550/arXiv.1501.06591
[63] J. M. Cline, C. Grojean, and G. Servant, “Cosmological expansion in the presence of an extra dimension”, Phys. Rev. Lett. 83, 4245 (1999). DOI: 10.1103/PhysRevLett.83.4245
[64] C. Csaki, M. Graesser, C. F. Kolda, and J. Terning, “Cosmology of one extra dimension with localized gravity”, Phys. Lett. B 462, 34 (1999). DOI: 10.1016/S0370- 2693%2899%2900896-5
[65] P. Binetruy, C. Deffayet, U. Ellwanger, and D. Langlois, “Brane cosmological evolution in a bulk with cosmological constant”, Phys. Lett. B 477, 285 (2000). DOI: 10.1016/S0370-2693%2800%2900204-5
[66] K. Freese, and M. Lewis, “Cardassian expansion: a model in which the universe is flat, matter dominated, and accelerating”, Phys. Lett. B 540, 1 (2002). DOI: 10.1016/S0370- 2693%2802%2902122-6
[67] R. Maartens, D. Wands, B. A. Bassett, and I. Heard, “Chaotic inflation on the brane”, Phys. Rev. D 62, 041301 (2000). DOI: 10.1103/PhysRevD.62.041301
[68] M. Jerome, R. Christophe, and V. Vincent, “Encyclopædia Inflationaris”, Phys. Dark Univ. 5(6), 75 (2014). DOI: 10.48550/arXiv.1303.3787
[69] D. Langlois, R. Maartens, and D. Wands, “Gravitational waves from inflation on the brane”, Phys. Lett. B 489, 259 (2000). DOI: 10.1016/S0370-2693%2800%2900957-6
[70] M. C. Bento, R. G. Felipe, and N. M. C. Santos, “Brane assisted quintessential inflation with transient acceleration”, Phys. Rev. D 77, 123512 (2008). DOI: 10.1103/PhysRevD.77.123512
[71] H. Es-sobbahi, and M. Nach, “On braneworld inverse power-law inflation”, International Journal of Modern Physics A 33(10), 1850058 (2018). DOI: 10.1142/S0217751X18500586
[72] K. Ichiki, et al. “Observational constraints on dark radiation in brane cosmology”, Physical Review D 66(4), 043521 (2002). DOI: 10.1103/PhysRevD.66.043521
[73] N. Sasankan, et al. “New observational limits on dark radiation in braneworld cosmology”, Physical Review D 95(8), 083516 (2017). DOI: 10.1103/PhysRevD.95.083516
[74] R. Maartens, et al. “Chaotic inflation on the brane”, Physical Review D 62(4), 041301 (2000). DOI: 10.1103/PhysRevD.62.041301
[75] Y. Akrami et al, “Planck 2018 results-X. Constraints on inflation”, A&A 641, A10 (2020). DOI: 10.1051/0004-6361/201833887
[76] G. Huey and J. E. Lidsey, “Inflation, braneworlds and quintessence”, Phys. Lett. B 514, 217 (2001). DOI: 10.1016/S0370-2693%2801%2900808-5
[77] E. J. Copeland, A. R. Liddle and J. E. Lidsey, “Steep inflation: ending braneworld inflation by gravitational particle production”, Phys. Rev. D 64, 023509 (2001). DOI: 10.1103/PhysRevD.64.023509
[78] G. Huey, and J. E. Lidsey, “Inflation, braneworlds and quintessence”, Physics Letters B 514(3-4), 217 (2001). DOI: 10.1016/S0370-2693
[79] E. J. Copeland, R. L. Andrew, and E. L. James, “Steep inflation: Ending braneworld inflation by gravitational particle production”, Physical Review D 64(2), 023509 (2001). DOI: 10.1103/PhysRevD.64.023509
[80] L. R. Abramo and F. Finelli, “Cosmological dynamics of the tachyon with an inverse power-law potential”, Phys. Lett. B 575, 165 (2003). DOI: 10.1016/j.physletb.2003.09.065
[81] C. Q. Geng, et al. “Quintessential inflation with canonical and noncanonical scalar fields and Planck 2015 results”, Physical Review D 92(2), 023522 (2015). DOI: 10.1103/PhysRevD.92.023522
[82] C. Q. Geng, et al. “Observational constraints on successful model of quintessential Inflation”, Journal of Cosmology and Astroparticle Physics 2017(06), 011 (2017). DOI: 10.1088/1475-7516/2017/06/011
[83] S. Lola, L. Andreas, and N. S. Emmanuel, “Inflation with non-canonical scalar fields revisited”, The European Physical Journal C 81(8), 719 (2021). DOI: 10.1140/epjc/s10052-021-09516-8