[1] J. D. Bekenstein, “Black holes and entropy”, Phys. Rev. D 7, 2333 (1973). DOI:10.1103/PhysRevD.7.2333
[2] S. W. Hawking, “Black hole explosions”, Nature 248, 30 (1974). DOI:10.1038/248030a0
[3] P. Chen, Y. C. Ong, and D. h. Yeom, “Black Hole Remnants and the Information Loss Paradox”, Phys. Rept. 603, 1 (2015). DOI:10.1016/j.physrep.2015.10.007
[4] J. M. Bardeen, B. Carter, and S. W. Hawking, “The Four laws of black hole mechanics”, Commun. Math. Phys. 31, 161 (1973). DOI:10.1007/BF01645742
[5] G. W. Gibbons and M. J. Perry, “Black Holes and Thermal Green’s Functions”, Proc. Roy. Soc. Lond. A 358, 467 (1978). DOI:10.1098/rspa.1978.0022
[6] S. W. Hawking and D. N. Page, “Thermodynamics of Black Holes in anti-De Sitter Space”, Commun. Math. Phys. 87, 577 (1983). DOI:10.1007/BF01208266
[7] T. Jacobson, “Thermodynamics of space-time: The Einstein equation of state”, Phys. Rev. Lett. 75, 1260 (1995). DOI:10.1103/PhysRevLett.75.1260
[8] D. Kubiznak and R. B. Mann, “Black hole chemistry”, Can. J. Phys. 93(9), 999 (2015). DOI:10.1139/cjp-2014-0465
[9] M. M. Caldarelli, G. Cognola, and D. Klemm, “Thermodynamics of Kerr-NewmanAdS black holes and conformal field theories”, Class. Quant. Grav. 17, 399 (2000). DOI:10.1088/0264-9381/17/2/310
[10] R. G. Cai and S. P. Kim, “First law of thermodynamics and Friedmann equations of Friedmann-Robertson-Walker universe”, JHEP 02, 050 (2005). DOI:10.1088/1126-6708/2005/02/050
[11] P. C. W. Davies, “Thermodynamics of Black Holes”, Proc. Roy. Soc. Lond. A 353, 499 (1977). DOI:10.1098/rspa.1977.0047
[12] D. A. Easson, P. H. Frampton, and G. F. Smoot, “Entropic Accelerating Universe”, Phys. Lett. B 696, 273 (2011). DOI:10.1016/j.physletb.2010.12.025
[13] S. W. Hawking, “Gravitational radiation from colliding black holes”, Phys. Rev. Lett. 26, 1344 (1971). DOI:10.1103/PhysRevLett.26.1344
[14] C. Tsallis, “Possible Generalization of Boltzmann-Gibbs Statistics”, J. Statist. Phys. 52, 479 (1988). DOI:10.1007/BF01016429
[15] C. Tsallis, R. S. Mendes, and A. R. Plastino, “The Role of constraints within generalized nonextensive statistics”, Physica A 261, 534 (1998). DOI:10.1016/S0378-4371(98)00437-3
[16] M. Nauenberg, “Critique of q-entropy for thermal statistics”, Phys. Rev. E 67, 036114 (2003). DOI:10.1103/PhysRevE.67.036114
[17] A. S. Parvan and T. S. Biro, “Extensive Renyi statistics from non-extensive entropy”, Phys. Lett. A 340, 375 (2005). DOI:10.1016/j.physleta.2005.04.036
[18] C. Tsallis and L. J. L. Cirto, “Black hole thermodynamical entropy”, Eur. Phys. J. C 73, 2487 (2013). DOI:10.1140/epjc/s10052-013-2487-6
[19] T. S. Biró and V. G. Czinner, “A q-parameter bound for particle spectra based on black hole thermodynamics with Rényi entropy”, Phys. Lett. B 726, 861 (2013). DOI:10.1016/j.physletb.2013.09.032
[20] V. G. Czinner, “Black hole entropy and the zeroth law of thermodynamics”, Int. J. Mod. Phys. D 24(09), 1542015 (2015). DOI:10.1142/S0218271815420158
[21] V. G. Czinner and H. Iguchi, “Thermodynamics, stability and Hawking–Page transition of Kerr black holes from Rényi statistics”, Eur. Phys. J. C 77(12), 892 (2017). DOI:10.1140/epjc/s10052-017-5453-x
[22] C. Tsallis, “Black Hole Entropy: A Closer Look”, Entropy 22(1), 17 (2019). DOI:10.3390/e22010017
[23] G. Kaniadakis, “Statistical mechanics in the context of special relativity”, Phys. Rev. E 66, 056125 (2002). DOI:10.1103/PhysRevE.66.056125
[24] G. Kaniadakis, “Statistical mechanics in the context of special relativity. II.”, Phys. Rev. E 72, 036108 (2005). DOI:10.1103/PhysRevE.72.036108
[25] J. D. Barrow, “The Area of a Rough Black Hole”, Phys. Lett. B 808, 135643 (2020). DOI:10.1016/j.physletb.2020.135643
[26] S. Nojiri, S. D. Odintsov, and V. Faraoni, “Area-law versus Rényi and Tsallis black hole entropies”, Phys. Rev. D 104(8), 084030 (2021). DOI:10.1103/PhysRevD.104.084030
[27] C. Promsiri, E. Hirunsirisawat, and W. Liewrian, “Thermodynamics and Van der Waals phase transition of charged black holes in flat spacetime via Rényi statistics”, Phys. Rev. D 102(6), 064014 (2020). DOI:10.1103/PhysRevD.102.064014
[28] M. P. Dabrowski and V. Salzano, “Geometrical observational bounds on a fractal horizon holographic dark energy”, Phys. Rev. D 102(6), 064047 (2020). DOI:10.1103/PhysRevD.102.064047
[29] A. Majhi, “Non-extensive Statistical Mechanics and Black Hole Entropy From Quantum Geometry”, Phys. Lett. B 775, 32 (2017). DOI:10.1016/j.physletb.2017.10.043
[30] G. G. Luciano and M. Blasone, “q-generalized Tsallis thermostatistics in Unruh effect for mixed fields”, Phys. Rev. D 104(4), 045004 (2021). DOI:10.1103/PhysRevD.104.045004
[31] M. Asghari and A. Sheykhi, “Observational constraints of the modified cosmology through Barrow entropy”, Eur. Phys. J. C 82(5), 388 (2022). DOI:10.1140/epjc/s10052-022-10262-8
[32] E. M. C. Abreu and J. A. Neto, “Statistical approaches and the Bekenstein bound conjecture in Schwarzschild black holes”, Phys. Lett. B 835, 137565 (2022). DOI:10.1016/j.physletb.2022.137565
[33] A. Sayahian Jahromi, S. A. Moosavi, H. Moradpour, J. P. Morais Graça, I. P. Lobo, I. G. Salako, and A. Jawad, “Generalized entropy formalism and a new holographic dark energy model”, Phys. Lett. B 780, 21 (2018). DOI:10.1016/j.physletb.2018.02.052
[34] N. Drepanou, A. Lymperis, E. N. Saridakis, and K. Yesmakhanova, “Kaniadakis holographic dark energy and cosmology”, Eur. Phys. J. C 82(5), 449 (2022). DOI:10.1140/epjc/s10052-022-10415-9
[35] B. Pourhassan and İ. Sakallı, “Non-perturbative correction to the Hořava–Lifshitz black hole thermodynamics”, Chin. J. Phys. 79, 322 (2022). DOI:10.1016/j.cjph.2022.09.006
[36] S. Sen, A. Saha, and S. Gangopadhyay, “Signatures of quantum geometry from exponential corrections to the black hole entropy”, Gen. Rel. Grav. 56(5), 57 (2024). DOI:10.1007/s10714-024-03241-9
[37] B. Pourhassan, M. Dehghani, S. Upadhyay, I. Sakalli, and D. V. Singh, “Exponential corrected thermodynamics of Born–Infeld BTZ black holes in massive gravity”, Mod. Phys. Lett. A 37(33n34), 2250230 (2022). DOI:10.1142/S0217732322502303
[38] S. Soroushfar, B. Pourhassan, and İ. Sakallı, “Exploring non-perturbative corrections in thermodynamics of static dirty black holes”, Phys. Dark Univ. 44, 101457 (2024). DOI:10.1016/j.dark.2024.101457
[39] G. Maiella and C. Stornaiolo, “A CFT description of the BTZ black hole: Topology versus geometry (or thermodynamics versus statistical mechanics”, Int. J. Mod. Phys. A 22, 3429 (2007). DOI:10.1142/S0217751X07037111
[40] Rényi and Alfréd “On the dimension and entropy of probability distributions”, Acta Mathematica Academiae Scientiarum Hungarica 10(1-2), (1959). DOI:10.1007/BF02063299
[41] P. K. Townsend, “Black holes: Lecture notes”, [arXiv:gr-qc/9707012].
[42] S. Carlip, “Black Hole Thermodynamics”, Int. J. Mod. Phys. D 23, 1430023 (2014). DOI:10.1142/S0218271814300237
[43] J. D. Bekenstein, “Statistical Black Hole Thermodynamics”, Phys. Rev. D 12, 3077 (1975) DOI:10.1103/PhysRevD.12.3077
[44] P. C. W. Davies, “Thermodynamics of black holes”, Rept. Prog. Phys. 41, 1313 (1978). DOI:10.1088/0034-4885/41/8/004
[45] M. P. Hobson, G. P. Efstathiou, and A. N. Lasenby, “General Relativity: An Introduction for Physicists”, Cambridge University Press (2006). DOI:10.1017/CBO9780511790904
[46] V. Avramov, H. Dimov, M. Radomirov, R. C. Rashkov, and T. Vetsov, “On Thermodynamic Stability of Black Holes. Part I: Classical Stability”, Eur. Phys. J. C 84(3), 281 (2024). DOI:10.1140/epjc/s10052-024-12639-3
[47] I. Cimidiker, M. P. Dabrowski, and H. Gohar, “Generalized uncertainty principle impact on nonextensive black hole thermodynamics”, Class. Quant. Grav. 40(14), 145001 (2023). DOI:10.1088/1361-6382/acdb40
[48] A. Alonso-Serrano, M. P. Dabrowski, and H. Gohar, “Nonextensive Black Hole Entropy and Quantum Gravity Effects at the Last Stages of Evaporation”, Phys. Rev. D 103(2), 026021 (2021). DOI:10.1103/PhysRevD.103.026021
[49] H. Moradpour, A. H. Ziaie, I. P. Lobo, J. P. Morais Graça, U. K. Sharma, and A. S. Jahromi, “The third law of thermodynamics, non-extensivity and energy definition in black hole physics”, Mod. Phys. Lett. A 37(12), 2250076 (2022). DOI:10.1142/S0217732322500766
[50] S. Rani, A. Jawad, H. Moradpour, and A. Tanveer, “Tsallis entropy inspires geometric thermodynamics of specific black hole”, Eur. Phys. J. C 82(8), 713 (2022). DOI:10.1140/epjc/s10052-022-10655-9
[51] S. Ghaffari, G. G. Luciano, and A. Sheykhi, “Nonextensive entropies impact onto thermodynamics and phase structure of Kerr–Newman black holes”, Phys. Dark Univ. 44, 101447 (2024). DOI:10.1016/j.dark.2024.101447
[52] C. Tsallis, “Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World”, Springer, (2009). DOI:10.1007/978-0-387-85359-8