[1] S. Chandrasekhar, “The mathematical theory of black holes”, Oxford: Clarendon press, (1985).
[2] E. Hackmann, V. Kagramanova, J. Kunz, and C. Lämmerzahl, “Analytic solutions of the geodesic equation in higher dimensional static spherically symmetric space-times”, Phys. Rev. D 78 124018 (2008), Erratum [Phys. Rev. D 79 029901 (2009)]. DOI:10.1103/PhysRevD.79.029901
[3] E. Hackmann and C. Lämmerzahl, “Complete analytic solution of the geodesic equation in Schwarzschild–(anti-) de Sitter spacetimes”, Physical Review Letters 100 171101 (2008), DOI: 10.1103/PhysRevLett.100.171101
[4] E. Hackmann, C. Lämmerzahl, V. Kagramanova, and J. Kunz, “Analytical solution of the geodesic equation in Kerr-(anti-) de Sitter space-times”, Phys. Rev. D 81 044020 (2010), DOI: 10.1103/PhysRevD.81.044020
[5] S. Soroushfar, R. Saffari, J. Kunz, and C. Lämmerzahl, “Analytical solutions of the geodesic equation in the spacetime of a black hole in f (R) gravity”, Phys. Rev. D 92 044010 (2015), DOI: 10.1103/PhysRevD.92.044010
[6] B. Hoseini, R. Saffari, S. Soroushfar, J. Kunz, and S. Grunau, “Analytic treatment of complete geodesics in a static cylindrically symmetric conformal spacetime”, Phys. Rev. D 94 044021 (2016), DOI: 10.1103/PhysRevD.94.044021
[7] V. Z. Enolski, E. Hackmann, V. Kagramanova, J. Kunz, and C. Lämmerzahl, “Inversion of hyperelliptic integrals of arbitrary genus with application to particle motion in general relativity”, Journal of Geometry and Physics, 61 899 (2011), DOI:10.1016/j.geomphys.2011.01.001
[8] V. Kagramanova and S. Reimers, “Analytic treatment of geodesics in five-dimensional Myers-Perry space-times”, Phys. Rev. D 86 084029 (2012), DOI: 10.1103/PhysRevD.86.084029
[9] S. Soroushfar, R. Saffari, S. Kazempour, S. Grunau, and J. Kunz, “Detailed study of geodesics in the Kerr-Newman-(A) dS spacetime and the rotating charged black hole spacetime in f (R) gravity”, Phys. Rev. D 94 024052 (2016), DOI: 10.1103/PhysRevD.94.024052
[10] S. Soroushfar, R. Saffari, and A. Jafari, “Study of geodesic motion in a (2+ 1)-dimensional charged BTZ black hole”, Phys. Rev. D 93, 104037 (2016), DOI:10.1103/PhysRevD.93.104037
[11] S. Soroushfar and M. Afrooz, “Analytical solutions of the geodesic equation in the space-time of a black hole surrounded by perfect fluid in Rastall theory”, Indian J. Phys. 96, 593 (2022), DOI: 10.1007/s12648-020-01971-5
[12] S. Soroushfar, “Geodesic motion in the spacetime of a (2 + 1) D black hole conformally coupled to a massless scalar”, JHAP 3(1), 49 (2023). DOI: 10.22128/jhap.2023.654.1041
[13] I. Çimdiker, D. Demir, and A. Övgün, “Black hole shadow in symmergent gravity”, Phys. Dark Univ. 34, 100900 (2021). arXiv:2110.11904 [gr-qc], DOI:10.1016/j.dark.2021.100900
[14] J. Rayimbaev, R. C. Pantig, C. Reggie C, A. Övgün, A. Abdujabbarov, and D. Demir, “Quasiperiodic oscillations, weak field lensing and shadow cast around black holes in Symmergent gravity”, Annals of Physics 454, 169335 (2023). arXiv:2206.06599 [gr-qc], DOI: 10.1016/j.aop.2023.169335
[15] R. C. Pantig, A. Övgün, and D. Demir, “Testing Symmergent gravity through the shadow image and weak field photon deflection by a rotating black hole using the M87 and Sgr. A results”, The European Physical Journal C 83, 250 (2023). arXiv:2208.02969 [gr-qc], DOI: 10.1140/epjc/s10052-023-11400-6
[16] D. Durmus, “Emergent Gravity as the Eraser of Anomalous Gauge Boson Masses, and QFT-GR Concord”, Gen. Rel. Grav. 53, 22 (2021). arXiv:2101.12391 [gr-qc], DOI: 10.1007/s10714-021-02797-0
[17] D. Durmus, “Symmergent Gravity, Seesawic New Physics, and their Experimental Signatures”, Adv. High Energy Phys. 2019, 4652048 (2019). arXiv:1901.07244 [hep-ph], DOI: 10.1155/2019/4652048
[18] A. D. Durmus, “Curvature-Restored Gauge Invariance and Ultraviolet Naturalness”, Adv. High Energy Phys. 2016, 6727805 (2016). arXiv:1605.00377 [hep-ph], DOI: 10.1155/2016/6727805
[19] A. Ditta, F. Javed, G. Mustafa, S. K. Maurya, D. Sofuoğlu, and F. Atamurotov, “Thermal analysis of charged Symmergent black hole with logarithmic correction” Chin. J. Phys. 88, 287 (2024). DOI: 10.1016/j.cjph.2024.01.019
[20] R. Ali, R. Babar, Z. Akhtar, and A. Övgün, “Thermodynamics and logarithmic corrections of symmergent black holes” Results Phys. 46, 106300 (2023). [arXiv:2302.12875 [gr-qc]], DOI: 10.1016/j.rinp.2023.106300
[21] B. Puliçe, R. C. Pantig, A. Övgün, and D. Demir, “Constraints on charged symmergent black hole from shadow and lensing”, Class. Quant. Grav. 40(19), 195003 (2023). [arXiv:2308.08415 [gr-qc]], DOI: 10.1088/1361-6382/acf08c