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Abstract. In this paper, null geodesics for a symmergent black hole are investigated.
The geodesic equation of this space time is solved analytically according to the Weier-
strass elliptic function. Also, the effective potential is obtained and plotted. Finally,
using the form of effective potential and obtained analytical solution of geodesic equa-
tions, some possible types of orbits related to null geodesics are demonstrated.

Keywords: Black Hole; Null Geodesics; Elliptic Function; Analytical Solution.

COPYRIGHTS: ©2024, Journal of Holography Applications in Physics. Published by Damghan Uni-
versity. This article is an open-access article distributed under the terms and conditions of the Creative
Commons Attribution 4.0 International (CC BY 4.0).
https://creativecommons.org/licenses/by/4.0

55



56 Saheb Soroushfar

1 Introdution
Analytical solutions of geodesic equations help to understand the gravitational effects of
black holes. These analytical solutions can be effective for checking various experimental
predictions such as perihelion shift, Lens-Teering effect, light deviation and gravitational
time delay. Due to the importance of the subject, so far many researchers have tried to
analyze the geodetic equations of many different space times with the help of analytical
solutions [1–12]. Symmergent gravity is a special case of generalized f(R) gravity and can
be said to be gravity with quadratic curvature and a finite cosmological constant. It can
be said that the solution of symmergent black hole was first investigated by Cimdiker and
colleagues in [13], and different physical characteristics of this type of black hole, including
weak lensing, shadow radius, quasi-periodic, oscillations, and other information about this
theory, have been analyzed by various researchers [14–21]. In addition to the previous
works regarding symmergent black hole, it can be important to study the motion of light
rays around this black hole. Certainly, investigating the state of light rays motion requires
investigating geodesic equations and solving them analytically. Here, Weirstrass elliptic
function is used for the analytical solution of null geodesic equations. The structure of this
paper is as follows: In section (2), a brief overview of a symmergent black hole space time is
given. Analytical solution of null geodesic equations, effective potential and lightlike orbits
are studied in section (3). Finally, the conclusion is presented in section (4).

2 symmergent black hole
In this section, the metric of a symmergent black hole is studied. The action used in this
theory can be written as follows [20,21]

I =

∫
d4x

√
−g

[
R

16πG
− c0

16
R2 − V0 − Lm

]
, (1)

where Lm is the matter Lagrangian, R is the Ricci scalar, c0 is the quadratic curvature
coefficient (the symmergent parameter), and V0 is the vacuum energy density. Considering
the above action and the corresponding field equations, the metric of a static spherically
symmergent black hole spacetime can be written as

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dθ2, (2)

and
f(r) = 1− 2MG

r
− (1− α)

24πc0G
r2, (3)

where as mentioned earlier, c0 is the symmergent parameter (loop coefficient) and also α is
an integration constant. For the case of α = 1 or c0 = ∞, the metric function (3) converts
to the Schwarzschild black hole metric. More details of this solution can be found in Refs.
[20,21].

3 Analytical solution of geodesic equations
In this section, the geodesic equations and analytical solutions are studied. The geodesic
motion is described by the geodesic equation

d2xµ

ds2
+ Γµ

ρσ

dxρ

ds

dxσ

ds
= 0, (4)
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where Γµ
ρσ is the Christoffel symbol. The conserved energy and angular momentum as a

constant of motions are obtained by the normalization condition 1
2gµν

dxµ

ds
dxν

ds = 1
2ϵ, where

for massive particles ϵ = 1 and for light ϵ = 0,

E = gtt
dt

ds
, (5)

L = gφφ
dφ

ds
= r2

dφ

ds
. (6)

So, the geodesic equations can be obtained as(dr
ds

)2

= E2 −
(
1− 2MG

r
− (1− α)

24πc0G
r2
)(

ε+
L2

r2

)
, (7)

( dr

dφ

)2

=
r4

L2

(
E2 − (1− 2MG

r
− (1− α)

24πc0G
r2)

)(
ε+

L2

r2

)
. (8)

Equations (7) and (8) give a description of the dynamics of the geodesic motion. The
effective potential can be obtained from equation (7) as

Veff =

(
1− 2MG

r
− (1− α)

24πc0G
r2
)(

ε+
L2

r2

)
. (9)

Plot of effective potential is shown in Figure (1). With G = 0 and the dimensionless
quantities

r̃ =
r

M
,

L̃ =
M2

L2
,

c̃ =
c0
M

,

(10)

equation (8) can be written as( dr̃

dφ

)2

=
L̃ε (1− α) r̃6

24c̃π
+ ((1− α) + (E2 − ε)L̃) r̃4 + 2Lεr̃3 − r̃2 + 2r̃. (11)

The necessary condition for the existence of a geodesic is R(r̃) ≥ 0. Thus, the zeros of R(r̃),
determine the type of geodesic.

3.1 Null geodesics
For ε = 0 and u = 1

r̃ , equation (11) is converted into the following( du

dφ

)2

= 2u3 − u2 + ((1− α) + E2L̃) = P3(u). (12)

Equation (12) is of elliptic type and with the substitution u = 2y + 1
6 , can be transformed

to the Weierstrass form ( dy

dφ

)2

= 4y3 − g2y − g3 = P3(y), (13)
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g2 =
1

12
,

g3 =
1

216
− 1

4
((1− α) + E2L̃).

The analytical solution of equation (13) is given by

y(φ) = ℘(φ− φin), (14)

and so,
r̃(φ) =

1

2℘(φ− φin; g2, g3) +
1
6

, (15)

in which
φin = φ0 +

∫ ∞

y0

dz√
4y3 − g2 − g3

, (16)

and
y0 =

1

2r̃0
− 1

12
,

depends only on the initial values φ0 and r̃0.

3.2 Orbits
Here, using the figure of the effective potential and obtained analytical solution, some of
possible orbits are demonstrated in Figure 1. Here, different types of orbits can be identified
as

1. Terminating bound orbit (TBO): r starts in (0, ra] for 0 < ra < ∞ and falls into the
singularity at r = 0.

2. Flyby orbit (FO): r starts from ∞, then approaches a periapsis r = rp and goes back
to ∞.

3. Terminating escape orbit (TEO): r comes from ∞ and falls into the singularity at
r = 0.

Examples of such orbits along with the shape of the effective potential are demonstrated in
Figure 1.

4 Conclusion
In this paper, null geodesics for a symmergent black hole were investigated. The equations
of geodesic motions were obtained and solved according to Weierstrass elliptic function.
Moreover, by the help of the obtained analytical solution and the effective potential, we
have shown various possible orbits for light rays such as TBO, FO and TEO. These results
can be useful information for orbits around heavy objects, including the light deflection.
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(a) TBO (b) FO

(c) TEO (d)

Figure 1: (a, b, c): Examples of different types of orbits. The blue curves indicate the orbits
and the black dashed circle depicts the position of the horizon. (d): Plot of the effective
potential together with examples of energies for the different types of orbits. The red dashed
lines correspond to energies. The red dots mark the zeros of the polynomial R, which are
the turning points of the orbits. The vertical dashed line represents the horizon of the black
hole.
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