Thermodynamic Properties of Strongly Gravitating Systems

Document Type : Regular article


1 Department of Physics, S.P. Collage, Srinagar, Kashmir, 190001 India;

2 Inter University Centre for Astronomy and Astrophysics , Pune India;

3 Departamento de Física, Facultad de Ciencias Exactas Universidad Nacional de La Plata, Argentina;

4 Departamento de Matemáticas, Facultad de Ciencias Exactas Universidad Nacional de La Plata, Argentina;

5 Consejo Nacional de Investigaciones Científicas y Tecnológicas (IFLP-CCT-CONICET)-C. C. 727, 1900 La Plata, Argentina;


This paper investigates the thermodynamic properties of strongly interacting gravitational systems. By deriving the partition function for such systems, the authors obtain expressions for various thermodynamic quantities, including internal energy, specific heat, Helmholtz free energy, entropy, chemical potential, and pressure. The paper introduces an interaction parameter that quantifies the degree of non-ideality in the system, and explores its effects on the thermodynamic properties. The authors also calculate the moments generating function, which provides information about the distribution of particle positions. Additionally, the distribution function for the system is derived. The paper highlights the existence of an upper bound temperature beyond which the partition function becomes negative, indicating a limit on the validity of the model.


Main Subjects


Article PDF

[1] F. Ahmad, W. C. Saslaw, and N. I. Bhat, “Statistical Mechanics of the Cosmological Many-Body Problem”, ApJ, 571, 576 (2002), DOI: 10.48550/arXiv.0902.0747
[2] B. Pourhassan, S. Upadhyay, M. Hameeda, and M. Faizal, “Clustering of galaxies with dynamical dark energy”, MNRAS 468, 3166 (2017), DOI: 10.1093/mnras/stx697
[3] Padilla N. D. et al., “The 2dF Galaxy Redshift Survey: the clustering of galaxy groups”, MNRAS, 352, 211 (2004), DOI: 10.1111/j.1365-2966.2004.07911.x
[4] S. Capozziello, M. Faizal, M. Hameeda, B. Pourhassan, V. Salzano, and S. Upadhyay, “Clustering of galaxies with f(R) gravity”, MNRAS 474, 2430 (2018), DOI:10.1093/mnras/stx2945
[5] M. Itoh, S. Inagaki, and W. C. Saslaw, “Gravitational clustering of galaxies:Comparison between thermodynamic theory and N-body simulations. IV - The effects of continuous mass spectra”, ApJ, 403, 476 (1993), DOI: 10.1086/172219
[6] S. Upadhyay, B. Pourhassan, S. Capozziello, “Thermodynamics and phase transitions of galactic clustering in higher-order modified gravity”, Int. J. Mod. Phys. D 28, 1950027
(2019), DOI: 10.1142/S0218271819500275
[7] J. Ellis et al., “Supersymmetric relics from the big bang”, Nucl. Phys. B 238, 453 (1984), DOI: 10.1016/0550-3213(84)90461-9
[8] M. Byrne, C. Kolda, and P. Regan, “Bounds on Charged, Stable Superpartners from Cosmic Ray Production”, Phys. Rev. D 66, 075007 (2002) DOI:10.1103/PhysRevD.66.075007
[9] M. Hameeda, B. Pourhassan, M. Faizal, C. P. Masroor, R. Ul Haq Ansari, and P. K. Suresh, “Modified Theory of Gravity and Clustering of Multi-Component System of
Galaxies”, Eur. Phys. J. C 79, 769 (2019), DOI: 10.1140/epjc/s10052-019-7281-7
[10] M. Hameeda, Q. Gani, B. Pourhassan, and M. C. Rocca, “Boltzmann and Tsallis statistical approaches to study Quantum corrections at large distances and clustering of galaxies”, Int. J. Mod. Phys. A 37(18), 2250116 (2022), DOI:10.48550/arXiv.2012.05714
[11] M. Hameeda, B. Pourhassan, M. C. Rocca, and M. Faizal, “Finite Tsallis Gravitational Partition Function for a System of Galaxies”, Gen. Rel. Grav. 53, 41 (2021), DOI:10.1007/s10714-021-02813-3
Volume 4, Issue 2
June 2024
Pages 1-14
  • Receive Date: 04 June 2024
  • Revise Date: 29 June 2024
  • Accept Date: 29 June 2024