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Abstract. This paper investigates the thermodynamic properties of strongly inter-
acting gravitational systems. By deriving the partition function for such systems, the
authors obtain expressions for various thermodynamic quantities, including internal
energy, specific heat, Helmholtz free energy, entropy, chemical potential, and pressure.
The paper introduces an interaction parameter that quantifies the degree of non-ideality
in the system, and explores its effects on the thermodynamic properties. The authors
also calculate the moments generating function, which provides information about the
distribution of particle positions. Additionally, the distribution function for the system
is derived. The paper highlights the existence of an upper bound temperature beyond
which the partition function becomes negative, indicating a limit on the validity of the
model.
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1 Introduction
The vastness of intergalactic distances far exceeds the typical length scale of individual
galaxies by many orders of magnitude. Consequently, a system of galaxies can be effectively
modeled as a collection of point particles. This simplification allows for the application of
standard methods from statistical mechanics to analyze the system [1]. Furthermore, this
approach facilitates the exploration of the thermodynamic limits of such an interacting sys-
tem of galaxies, enabling the derivation of relevant thermodynamic quantities. By treating
galaxies as point particles, we can apply various statistical mechanics frameworks to gain
insights into the macroscopic behavior of the system. This includes calculating quantities
such as entropy, temperature, and free energy, which describe the overall state of the galaxy
system. Additionally, understanding the interactions between these point particles helps in
elucidating the large-scale structure and dynamics of the universe. Analyzing the thermo-
dynamic properties of a galaxy system provides valuable information about its equilibrium
states and the conditions under which phase transitions might occur. These insights are
crucial for developing a comprehensive understanding of cosmic evolution and the underly-
ing physical principles governing the universe. As such, the study of intergalactic systems
through the lens of statistical mechanics and thermodynamics is a powerful tool in the field
of cosmology, offering profound implications for our knowledge of the universe’s fundamen-
tal nature [2]. The distribution of galaxies is profoundly influenced by gravitational forces,
as highlighted by Ref. [3]. Gravitational force is a fundamental factor not only in the clus-
tering of galaxies but also in the formation of their large-scale structures. Understanding
the characterization of galactic clusters on a vast scale is essential for comprehending the
evolution and distribution of galaxies throughout the Universe [4]. One of the standard
methods to study the formation and evolution of the Universe involves analyzing correlation
functions through observational data and N-body computer simulations [5]. In gravitating
systems where interactions occur in pairs, these correlation functions are critical as they
determine the thermodynamical properties, including gravitational effects. The importance
of these studies lies in their ability to provide insights into the underlying physical processes
governing galactic dynamics and interactions. By examining the spatial distribution and
movement of galaxies, researchers can infer the influence of dark matter and dark energy,
as well as gain a deeper understanding of cosmic expansion and the overall architecture
of the cosmos. Furthermore, advancements in computational techniques and observational
technologies have significantly enhanced our ability to model and simulate complex gravi-
tational interactions in the Universe. This progress has allowed for more precise predictions
and a better grasp of how galaxies coalesce into larger structures such as galaxy clusters and
superclusters.

The study of galactic clustering, driven by the gravitational interactions between galax-
ies, has become a topic of profound interest in the field of astrophysics. These gravitational
interactions play a critical role in shaping the large-scale structure of the universe, influ-
encing the formation and evolution of galaxies. By examining how galaxies group together
in clusters, researchers can gain valuable insights into the underlying principles governing
cosmic structure and the distribution of dark matter. This area of research not only helps
in understanding the dynamics and history of galaxy formation but also provides essential
clues about the overall composition and fate of the universe. The complexity of these inter-
actions necessitates sophisticated observational techniques and theoretical models, making
galactic clustering a vibrant and evolving area of scientific inquiry [6–8].

Strongly gravitating systems, such as dense stellar clusters, galactic nuclei, and certain
astrophysical objects, exhibit complex interactions that cannot be adequately described by
simple models of ideal gases. In these systems, gravitational forces dominate over other
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interactions, leading to highly non-linear and correlated dynamics. Understanding the ther-
modynamic properties of strongly gravitating systems is crucial for gaining insights into their
formation, evolution, and observable characteristics [9]. Previous studies have primarily fo-
cused on dilute systems or perturbative approaches, where the gravitational interactions are
treated as small perturbations. However, in strongly gravitating systems, the interactions
are so strong that non-perturbative methods are necessary to capture the full complexity
of the problem [10]. One approach to studying such systems is through the formalism of
statistical mechanics, which provides a framework for describing the collective behavior of
many-body systems. By deriving the partition function, which encodes the statistical prop-
erties of the system, one can obtain expressions for various thermodynamic quantities, such
as internal energy, specific heat, free energy, and entropy [11]. Early attempts to derive the
partition function for gravitational systems faced challenges due to the long-range nature of
the gravitational force and the intrinsic divergences that arise in the calculations. However,
recent advances in techniques such as dimensional regularization have provided new avenues
for addressing these issues. This paper aims to develop a theoretical framework for studying
the thermodynamics of strongly interacting gravitational systems by deriving the partition
function and exploring its consequences. Specifically, we employ dimensional regularization
techniques to obtain a well-defined partition function, from which we derive expressions for
various thermodynamic quantities, including internal energy, specific heat, Helmholtz free
energy, entropy, chemical potential, and pressure. To account for the non-ideality of the
system, we introduce an interaction parameter that quantifies the degree of deviation from
ideal gas behavior. This parameter allows us to study the effects of strong interactions on
the thermodynamic properties and explore the transition from dilute to strongly interact-
ing regimes. Furthermore, we calculate the moments generating function, which provides
information about the distribution of particle positions within the system. This analysis
can shed light on the spatial correlations and clustering properties that arise due to the
strong gravitational interactions. The understanding of strongly gravitating systems has
implications not only in astrophysics but also in the broader context of gravitational physics
and the holographic principles that govern the relationship between gravity and quantum
mechanics.

The study of strongly gravitating systems and their thermodynamic properties has po-
tential connections to holographic principles in theoretical physics. Holography, as proposed
by the holographic principle, suggests that the information contained within a volume of
space can be fully described by the information encoded on its boundary. This principle has
profound implications for our understanding of gravity and quantum mechanics, particularly
in the context of black holes and the AdS/CFT correspondence (Anti-de Sitter/Conformal
Field Theory correspondence). Strongly gravitating systems, such as dense stellar clusters
and certain astrophysical objects, can exhibit gravitational effects that may be relevant to
the holographic description of gravity. The thermodynamic properties of these systems,
as studied in this paper, could potentially provide insights into the holographic nature of
gravity and the relationship between bulk and boundary descriptions.

2 Partition function of a strongly interacting system
The partition function Z in ν dimensions is given by

Zν = − 1

N !

∞∫
−∞

dνx

∞∫
−∞

dνp exp

[
β

(
N(N − 1)Gm2

2r
− Np2

2m

)]
, (1)
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which can be written as

Zν = − 1

N !

[
2π

ν
2

Γ
(
ν
2

)]2 ∞∫
0

rν−1dr

∞∫
0

pν−1dp exp

(
β

(
N(N − 1)Gm2

2r

)
exp

(
−Np

2

2m

))
. (2)

It can be reduced to

Zν = − 1

N !

[
2π

ν
2

Γ
(
ν
2

)]2 ∞∫
0

rν−1dr exp

β(N(N − 1)Gm2

2r

) ∞∫
0

pν−1dp exp

(
−Np

2

2m

) . (3)

Using integral
∞∫
0

rν−1dr exp

(
β

(
N(N − 1)Gm2

2r

))
= cos(πν)

(
N(N − 1)βGm2

2

)ν

Γ(−ν), (4)

and
∞∫
0

pν−1dr exp

(
−β

(
Np2

2m

))
=

2−ν
(

Nβ
2m

)−ν
2 √

πΓ(ν)

Γ
(
ν+1
2

) , (5)

the partition function Z is obtained as

Z = − 1

N !
4π cos(πν)

(
N(N − 1)2βG2m5π2

4

) ν
2 Γ(ν)Γ(−ν)
Γ
(
ν
2

)2
Γ
(
ν+1
2

) . (6)

This diverges at ν = 3, thus we appeal to the dimensional regularization (DR) and write
the partition function independent of the terms containing ν − 3. Thus we get

Z = − 1

N !

1

3
√
π

(
π2βG2m5N(N − 1)2

2

) 3
2
[
17

3
− 3C − ln

(
2π2βN(N − 1)2G2m5

)]
. (7)

This is the N particle partition function for a highly interacting gravitational system from
where we can calculate and analyze the thermodynamic equations of state. Before discussing
the thermodynamic properties we see that the partition function becomes negative below a
certain temperature what we call as the upper bound temperature Tl. It is given by

T =
2π2G2

kB
N(N − 1)2m5 exp

(
−17

3
+ 3C

)
. (8)

The partition function is positive if the function g(T ) defined below is positive,

g(T ) = 3 ln
(
2π2βN(N − 1)2G2m5

)
− 17 + 9C. (9)

In the plots of Figure 1 we can see behavior of g(T ) to obtain upper bound of temperature
where it is positive. After analyzing the above part of the partition function, we found it is
positive up to a temperature what we call upper bound and beyond that partition function
becomes negative. It is obtained after using the natural approximation G = kB = m = 1
and for the number of particles N = 2. We show that the upper bound of temperature is
strongly depends on the number N .
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Figure 1: Upper bound of temperature for positive partition function for G = m = 1.

3 Internal energy and the interaction parameter
Internal energy U is obtained using

U = − 1

Z
∂Z
∂β

, (10)

which is yield

U =
3

2β

[
1− 2

[17− 9C − 3 ln (2π2βN(N − 1)2G2m5)]

]
, (11)
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or we write it in the form
U =

3

2β
[1− 2fin] , (12)

where we define the interaction parameter fin as

fin =
1

[17− 9C − 3 ln (2π2βN(N − 1)2G2m5)]
. (13)

This takes care of the non ideal behavior of the system. For no interactions, it should be zero
and for a complete virialized system fin = 1, hence 0 ≤ fin ≤ 1. It helps us to obtain a lower
bound of temperature as illustrated by Figure 2. The interaction parameter fin for strongly
gravitating gas is plotted with respect to temperature to see the impact of temperature and
we see the system becomes virialized that fin approaches 1 around a particular temperature.
At very high temperatures the interactions become less dominant but do not vanish.

Figure 2: Interaction parameter in terms of temperature for G = m = 1.

From earlier theories for dilute systems clustering parameter b has been defined as

b(N,V, T ) =
3G2m6

2V NT−3

1 + 3G2m6

2V NT−3
, (14)

In Figure 3 we show behavior of the clustering parameter in terms of the temperature.
Specific heat Cv is obtained using

Cv =

(
∂U

∂T

)
V

. (15)

Thus we have
Cv =

3kB
2

(
1− 2fin + 6f2in

)
. (16)
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Figure 3: Clustering parameter in terms of temperature for G = m = V = 1.

Figure 4: Specific heat (equation (16)) in terms of the temperature for kB = G = m = 1.

In Figure 4 we can see typical behavior of the specific heat with temperature. In absence
of interaction (N = 1) we can see that the specific heat is constant while effect of the
interaction is a gap in a particular temperature.
The specific heat for dilute systems is obtained as

cv =
3kb
2

(
1 + 4b− 6b2

)
. (17)
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In the plots of Figure 5 we compare specific heat given by the equation (16) with the equation
(17) and find that they coincide at high temperatures. We can see that the specific heat for
dilute system is negative at low temperatures, which yields a maximum and is reduced to a
constant at high temperatures. The mentioned maximum of the specific heat is known as a
Schottky anomaly.

Figure 5: Temperature dependence of specific heat for a dilute system with kB = G = m = 1.

4 Thermodynamic properties
Helmholtz free energy F is obtained using

F = − 1

β
lnZ. (18)

Thus, F is obtained and written in terms of interaction parameter as follows,

F = − 1

β

[
3

2

(
17

3
− 3C − 1

3fin

)
− ln(−fin)− ln(144

√
2πN !)

]
. (19)

In Figure 6 we can see typical behavior of the Helmholtz free energy in terms of temperature.
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Figure 6: Helmholtz free energy in terms of the temperature for kB = G = m = 1.

We can see a minimum which may be a sign of the model phase transition. It is indeed
corresponding to phase transition point of the dilute systems which is illustrated by plots of
Figure 5.
The entropy S is obtained from TS = U − F , which yields,

S =
3

2βT

(
1− 2fin +

17

3
− 3C − 1

3fin
− 2

3
ln(−fin)−

2

3
ln(144

√
2πN !)

)
. (20)

The chemical potential µ is obtained using

µ =

(
∂F

∂N

)
T

, (21)

which yields to the following relation,

µ =
1

β

(
ψ(N + 1)

N !
+

3N2 − 3N + 1

N(N − 1)2

(
fin − 3

2

))
, (22)

where ψ(z) = d ln Γ(z)
dz . Pressure P is obtained using

PV =
2N

3
U, (23)

which yields to the following corrected equation of state,

PV =
N

β
[1− 2fin] . (24)

The grand canonical partition function ZG can be defined as

lnZG = βPV, (25)
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which yields to the following relation,

ZG = eN(1−2fin). (26)

The fact that the interactions between different particles must cause some correlations in
their positions. We study this by calculating the correlation function ξ. The integral of the
correlation function over a certain volume in terms of the mean square fluctuation of the
total number of particles in that volume is given by

ζ ≡
∫
ξdV =

< (∆Ni)
2 >

N̄i
− 1. (27)

Expressing it in thermodynamic quantities as

ζ ≡
∫
ξdV = −NT

V

(
∂V

∂P

)
T

− 1. (28)

Calculating using the equation of pressure and using k = 1 we have

ζ ≡
∫
ξdV =

2fin
1− 2fin

(29)

For a classical ideal gas
∫
ξdV = 0 because there are no interactions. But we see the

correlation function depends on interaction parameter and the number of particles. In
Figure 7 we show typical behavior of the correlation function and see that it is a constant
at high temperatures.

Figure 7: Correlation function in terms of the temperature for kB = G = m = 1.
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5 Moments generating function
We are going to calculate the moments < rk >, where k is a natural number. Its value in ν
dimensions is given by the following formula

< rk >ν= − 1

N !

[
2π

ν
2

Γ
(
ν
2

)]2 ∞∫
0

rν+k−1dr

∞∫
0

pν−1dp exp

(
β

(
N(N − 1)Gm2

2r

)
exp

(
−Np

2

2m

))
.

(30)
After evaluating the preceding integral, we obtain

< rk >ν= −
√
π

N !
22−

ν
2 πν cos(πν)

(
m

Nβ

) ν
2
(
N(N − 1)2βGm2

2

)ν+k

g(Γ), (31)

where we defined

g(Γ) ≡ Γ(1 + ν)Γ(ν)Γ(−ν)
Γ
(
ν
2

)2
Γ(1 + k + ν)Γ

(
ν+1
2

) . (32)

As we can see from formula (34), the value of < rk > is not defined in ν = 3. To get its
value at ν = 3, we resorted again to Laurent’s development. Then we have

< rk >3= f(3)

(
−C +

f ′(3)

f(3)

)
, (33)

where

f(ν) = −
√
π

N !
22−

ν
2 πν cos(πν)

(
m

Nβ

) ν
2
(
N(N − 1)2βGm2

2

)ν+k

g′(Γ), (34)

with

g′(Γ) ≡ Γ(1 + ν)Γ(ν)

Γ
(
ν
2

)2
Γ(1 + k + ν)Γ

(
ν+1
2

) . (35)

Hence, we can rewrite the equation (33) as following

< rk >3=

√
π

N !

25/23π2

Γ(k + 4)

(
m

Nβ

) 3
2
(
N(N − 1)2βGm2

2

)3+k

X, (36)

where

X ≡ −C + ln
π√
2
+ ln

(
m

Nβ

) 1
2

+ ln

(
N(N − 1)2βGm2

2

)
− 7

6
− 1

3 + k
+Ψ, (37)

where
Ψ ≡ −ψ(3 + k) + 2ψ(3)− 2ψ(

3

2
)− ψ(2). (38)

The moments generating function is now

M(t) =

∞∑
k=0

< rk >
tk

k!
. (39)
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6 Distribution function
Distribution function is given by the following relation,

F (N) =
zNZ
ZG

. (40)

Making use of Stirlings approximation in chemical potential we find the fugacity z as

zN = eNβµ, (41)

which yields to the following equation,

zN = NNe

(
3N2−3N+1

(N−1)2
(fin−3/2)

)
. (42)

Thus we get

F (N) = − NN

9N !fin
√
π
e

(
3N2−3N+1

(N−1)2
(fin−3/2)−N(1−2fin)

) (
π2βG2m5N(N − 1)2

2

) 3
2

(43)

In Figure 8 we draw distribution function for various temperatures.

Figure 8: Distribution function in terms of the clustering number for kB = G = m = 1.

7 Conclusions
In this paper, we have presented a theoretical investigation of the thermodynamic prop-
erties of strongly gravitating systems. By deriving the partition function and employing
dimensional regularization techniques, we obtained expressions for various thermodynamic
quantities, such as internal energy, specific heat, Helmholtz free energy, entropy, chemical
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potential, and pressure. The introduction of an interaction parameter allowed us to quantify
the non-ideality of the system and study its effects on thermodynamic properties.

Our analysis revealed the existence of an upper bound temperature beyond which the
partition function becomes negative, indicating a limitation of the model’s validity. We
also calculated the moments generating function, providing insights into the distribution of
particle positions, and derived the distribution function for the system.
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