The Nucleus Rotating Effect on the Electron Energy Levels via the Seiberg-Witten Map: A Semi-classical Approach

Document Type : Regular article

Author

Department of Physics, Faculty of Science, Shahrekord, Iran;

Abstract

In a semi-classical approach, we relate the spin and rotation of the nucleus. We find the effect of the rotation attributed to the nucleus on the energy of the electron layers. The aim of the present work is to investigate the correction of the magnetic moment and electron vertex function in the lowest order of approximation in the presence of field correction by Seiberg-Witten's method. We will also exploit Seiberg-Witten's relations in the official method, reconstruct the sources and solve modified Maxwell's equations. Furthermore, we will show that in the first approximation of non-commutativity, Seiberg-Witten's and Bopp's shift methods are unequal. The present work is based on non-relativistic quantum mechanics; therefore, the results of this research are expected to change by applying the principles of holography and using the Schrodinger equation compatible with gravitational effects.

Keywords

Main Subjects

 

Article PDF

[1] N. Seiberg and E. Witten, “String Theory and Noncommutative Geometry”, JHEP 9909, 032 (1999) DOI:10.1088/1126-6708/1999/09/032
[2] M.R. Douglas and N. Nekrasov, “Noncommutative Field Theory”, Rev. Mod. Phys. 73, 977 (2001) DOI:10.1103/RevModPhys.73.977
[3] T. C. Adorno, D. M. Gitman, A. E. Shabad, and D. V. Vassilevich, “Noncommutative magnetic moment of charged particles”, Phys. Rev. D84, 085031 (2011) DOI: 10.1103/PhysRevD.84.085031
[4] D. J. Gross and N. A. Nekrasov, “Solitons in Noncommutative Gauge Theory”, JHEP 0103, 044 (2001) DOI:10.1088/1126-6708/2001/03/044
[5] R. J. Szabo, “Quantum field theory on noncommutative spaces”, Phys. Rep. 378, 207 (2003) DOI:10.1016/S0370-1573(03)00059-0
[6] A. Fischer and R. J. Szabo, “Duality covariant quantum field theory on noncommutative Minkowski space”, JHEP 0902, 031 (2009) DOI: 10.1088/1126-6708/2009/02/031
[7] M. Chaichian, P. Presnajder, M. M. Sheikh-Jabbari, and A. Tureanu, “Noncommutative Standard Model: Model Building”, Eur. Phys. J. C29, 413 (2003) DOI: 10.1140/epjc/s2003-01204-7
[8] M. M. Sheikh-Jabbari, “One Loop Renormalizability of Supersymmetric Yang-Mills Theories on Noncommutative Two-Torus”, JHEP 9906, 015 (1999) DOI: 10.1088/1126- 6708/1999/06/015
[9] A. Connes and M. Marcolli, “Non-Commutative Geometry, Quantum Fields and Motives”, London: Academic Press (1994).
[10] P. Aschieri, M. Dimitrijevic, P. Kulish, and et al, “Notes in Phys, Non-Commutative Space-times: Symmetries in Non-Commutative Geometry and Field Theory”, Berlin Heidelberg: Springer 774, (2009).
[11] R. J. Szabo, “Quantum Field Theory on Noncommutative Spaces”, Phys. Rep. 378, 207 (2003) DOI:10.1016/S0370-1573%2803%2900059-0
[12] O. Bertolami and C. A. D. Zarro, “Towards a Noncommutative Astrophysics”, Phys. Let. B673, 83 (2009) DOI:10.1103/PhysRevD.81.025005
[13] A. Jafari, “Photon dynamic in temporal noncommutative electrodynamics”, Eur. Phys. J. C 73, 2271 (2013) DOI:10.1140/epjc/s10052-012-2271-z
[14] A. Saha, “Quantum entanglement in analogue Hawking radiation: When is the final state nonseparable?”, Phys. Rev. D 89, 025010 (2014) DOI: 10.1103/PhysRevD.89.105024
[15] M. Chaichian, M. M. Sheikh-Jabbari, and A. Tureanu, “Hydrogen Atom Spectrum and the Lamb Shift in Noncommutative QED”, Phys. Rev. Lett. 86, 2716 (2001) DOI: 10.1103/PhysRevLett.86.2716
[16] J. David Jackson, “Classical Electrodynamics”, John Wiley and Sons Inc. (1998)
[17] A. Zangwill, “Modern Electrodynamics”, Oxford University Press Inc. (2012)
[18] R. Wald, “Advanced Classical Eletromagnetism”, Princeton University Press (2022)
[19] B. Leory, “Collision between two balls accompanied by deformation: A qualitative approach to Hertz’s theory”, American Journal of Physics 53, (1985) DOI: 10.1119/1.14164
[20] A. Grag, “The two cultures: SI and Gaussian units in electromagnetism”, Eur. J. Phys. 39, 045205 (2008) DOI:10.1088/1361-6404/aac233
[21] D. Petrascheck, “Unit system independent formulation of electrodynamics”, Eur. J. Phys. 42, 045201 (2021) DOI:10.1088/1361-6404/abe8c6
[22] R. Banerjee, C. Lee, and H. Seok Yang, “Seiberg-Witten-type maps for currents and energy-momentum tensors in noncommutative gauge theories”, Physical Rev. D70, 065015 (2004) DOI: 10.1103/PhysRevD.70.065015
[23] R. Banerjee and K. Kumar, “Maps for currents and anomalies in noncommutative gauge theories”, Physical Rev. D71, 045013 (2005) DOI: 10.1103/PhysRevD.71.045013
[24] H. Brain JR. and M. L. Michelsohn, “Spin Geometry”, Princeton University Press, New Jersey (1989)
[25] M. R. Pahlavani and R. Morad, “Application of AdS/CFT in Nuclear Physics”, Advances in High Energy Physics 2014, 863268 (2014) DOI: 10.1155/2014/863268
[26] S. J. Brodsky and G. F. de Teramond, “Nonperturbative QCD coupling and its β function from light-front holography”, Phys. Rev. D78, 025032 (2008) DOI: 10.1103/PhysRevD.81.096010
[27] J. A. de Wet, “The nuclear hologram”, International Math. Forum 1, 1841 (2006)
[28] K. Hashimoto, Y. Matsuo, and T. Morita, “Nuclear states and spectra in holographic QCD”, JHEP 12, 001 (2019) DOI:10.1007/JHEP12(2019)001
[29] H. Maxfield and Z. Zahraee, “Holographic solar systems and hydrogen atoms: non-relativistic physics in AdS and its CFT dual”, JHEP 11, 093 (2022) DOI: 10.1007/JHEP11(2022)093
[30] R. Sandapen, “A Virtual Tribute to Quark Confinement and the Hadron Spectrum (vConf21)”, EPJ. Web of Conferences 258, 10009 (2022) DOI: 10.1051/epjconf/202225810009
[31] J. Gomis and T. Mehen, “Space-Time Noncommutative Field Theories And Unitarity”, Nucl. Phys. B591, 265 (2000) DOI: 10.1016/S0550-3213%2800%2900525-3
[32] A. Jahan, “Energy shift of interacting non-relativistic fermions in noncommutative space”, Iranian J. Phys. 5, 112 (2005)
[33] K. S. Krane, “Introductory Nuclear Physics”, New York, John Wiley and Sons Inc. (1988)
Volume 4, Issue 2
June 2024
Pages 43-54
  • Receive Date: 31 March 2024
  • Revise Date: 03 May 2024
  • Accept Date: 14 May 2024