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Abstract. In a semi-classical approach, we relate the spin and rotation of the nu-
cleus. We find the effect of the rotation attributed to the nucleus on the energy of the
electron layers. The aim of the present work is to investigate the correction of the mag-
netic moment and electron vertex function in the lowest order of approximation in the
presence of field correction by Seiberg-Witten’s method. We will also exploit Seiberg-
Witten’s relations in the official method, reconstruct the sources and solve modified
Maxwell’s equations. Furthermore, we will show that in the first approximation of non-
commutativity, Seiberg-Witten’s and Bopp’s shift methods are unequal. The present
work is based on non-relativistic quantum mechanics; therefore, the results of this re-
search are expected to change by applying the principles of holography and using the
Schrodinger equation compatible with gravitational effects.
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1 Introduction
The Seiberg-Witten map is one of the methods for introducing non-commutative geometry
in physics. The principles of this map have been explained in many texts [1–3]. The most
common instances of the studies of physicists in the field of non-commutative geometry
are the studies on the effects of importing non-commutative coordinates, which are mainly
limited to the first order of the non-commutative parameters. One of the conventional
methods for rewriting the physics of non-commutative geometry is Moyal-Weyl mapping
[4–8]. However, Moyal-Weyl mapping is also used up to the first order of non-commutativity.
The non-commutative geometry is a space of sufficiently smooth functions on R4 established
with the Moyal-Weyl product:

[ŷµ, ŷν ]⋆ = ıθµν . (1)

Here, θ as a real constant and antisymmetric tensor has a square length dimension. The
sign of the star product, is a method for the formulation of physics in non-commutative
geometry. A simple rule explains how we should apply it. Indeed, replacing the ordinary
products between quantities with a ⋆-product [9–13],

f̆(ŷ)ğ(ŷ) = f̆(y) ⋆ ğ(y) = f̆(y)e
ı
2∂
←

µθ
µν∂
→

ν ğ(y).

In most cases, because of the causality, time coordinates do not contribute to the non-
commutativity. According to the literature, the mean value of the non-commutativity pa-
rameter is in the order of

√
θ ∼ 10−15m [14,15].

After accepting the existence of a volume for the nucleus instead of a point nucleus, in the
semi-classical concept of the nucleus, the stationary state of the nucleus volume is a hard
idea to believe. Therefore, the nucleus can include more degrees of freedom, and this mo-
tivation strengthens the assumption of nucleus rotation. However, the main reason for the
rotation of the nucleus is a quasi-classical relationship between the orbital momentum and
the spin of the nucleus in determining the dipole moment of the nucleus [16–18].
Assuming the existence of nuclei rotation, we extract the effects of rotation and the cor-
rection of non-commutativity coordinates. This assumption requires the assumption of a
radius for the nucleus. The rotation of the nucleus requires the assumption of a nucleus
radius. Therefore, this work is based on the nucleus’ radius. We compare the effects of
non-commutative geometry in the nucleus, which is studied by Bopp’s shift method and the
Seiberg-Witten map. Due to the corrections of the electron energy levels, we demonstrate
that the two approaches are not equivalent. We show that the electric and magnetic dipole
moments, as well as one-loop vertex correction, change due to the mapping selection. Fur-
thermore, we provide a way to communicate the results of the two methods.
We take the direction of nucleus rotation as the normal of the preferred plane, and for
convenience, we limit the non-commutativity coordinates to the preferred plane as the case
study. So, we have the following assumption about non-commutativity:

θθ =

 0 θ 0
−θ 0 0
0 0 0

 . (2)

That is, we assume that the direction of the nucleus, ωω, is normal to the xoy-plane. We
consider the coincidence of the ẑ with the direction of nuclear rotation as a reason for the
difference of the third components of θθ in the above relationship.
We work in the Heaviside-Lorentz unit, [19–21]. Based on equation (1), at the first order of
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θ, the variation of electromagnetic fields can be explained by the Seiberg-Witten (SW) map
[1–3]

Ăµ = Aµ − 1

4
θαβ{Aα, ∂βAµ + Fβµ}⋆, (3)

where
F̆µν = ∂µĂν − ∂νĂµ − ı[Ăµ, Ăν ]⋆.

The Symbol, ,̆ is used for is used for the non-commutative coordinate functions. Substituting
equation (1) and defining fµν = ∂µAν − ∂νAµ, the changes of the field strength tensor, read

F̆µν = Fµν +
1

4
θαβ(2{Fµα, Fνβ}⋆ − {Aα,Dβ ⋆ Fµν + ∂βFµν}⋆, (4)

where the equation of motion for the strength tensor is as follows:

D̆µ ⋆ F̆
µν(ŷ) =

1

c
j̆ν(ŷ). (5)

Moreover, the covariant derivative is defined by

D̆µ⋆ = ∂µ − ı[Ăµ, ⋆].

The four-vector of the current is also changed in the SW map. The current term transforms
by

´̆jµ = u⋆(Λ̆) ⋆ j̆
µ ⋆ u−1

⋆ (Λ̆),

in which Λ should be changed:

Λ̆ = Λ +
1

4
θαβ{∂αΛ, Aβ}⋆.

So, the variation rule for the four-vector current is written as [3,22,23]

j̆µ =jµ − 1

2
θαβ{Aα, ∂βj

µ}⋆ + ψ(θθ.F.j)µ, (6)

where
(θθ.F.j)µ :=

1

2
θµαF

(0)
αβ j

(0) β +
1

2
θαβF

(0)
αβ j

(0) µ,

and ψ = 1. In this work, we admit the non-commutative geometry and restrict ourselves to
the first order of θ. We know that the SW map is only valid when we have θµνθµν > 0 and
this condition is realized in this paper. We also calculate the corrections to the Maxwell
equations and make deformed electrodynamics based on the SW map. The main aim of this
paper is to compare the effects of nucleus rotation on the energy levels of the electron layers
and emission lines and the absorption of atoms.
Although the basis of this article is a non-relativistic regime, we can refer to its holographic
version. The dynamics of the nucleus are expressed by a theory that is not conformal in it-
self. Basically, without relativistic approximations, the correspondence between the theories
of Ads and QCD cannot be established. This topic contains many deviations from the basic
order, such as that QCD is not supersymmetric while SYM is maximally supersymmetric,
e.t.c. Thus, the adaptation of the holographic principle to the QCD requires special con-
siderations and conditions. Of course, it must be acknowledged that, recently, many efforts
have been made to achieve this goal, and results have been obtained [24–28]. But we use
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the nuclear spin in the semi-classical approximation. Therefore, the way to achieve nuclear
spin values has no effect on its use.
The energy level of electron layers is certainly dependent on the status of the Schrodinger
equation. For the Schrodinger equation and its solutions, we have used the usual method
and matrix model, which otherwise required more approximation. Schrodinger’s equation,
whose results are used in this article, is a non-relativistic equation, while due to the corre-
spondence of Ads and CFT, the equation must be Lorentz invariant [29,30]. So, any change
in the structure of the Schrodinger equation can be a motivation for the correction research
in the results of this article. By applying changes and using the holographic versions of the
QED and QCD, corrections will certainly occur in the energy layers of the electrons.

2 Basic notations
We work in the Heaviside-Lorentz unit. By setting A → gA, with the help of the coupling
constant g, SW’s correction equations, equations (3)–(6) will be modified. In a semi-classical
interpretation, the center of atoms has a charge distribution function that lies within the
nucleus position, where the electron cannot be seen. Approximately, the shape of a nucleus
can be assumed to be a sphere with a radius R. As we mentioned in the previous section,
the radius of the nuclear is at least larger than

√
θ. We denote the region r < R and its

related quantities with the index of ”<”, and in the same style, we denote the region r > R
with ”>”. We can split the electromagnetic fields into two separate parts,

Ăµ = A(0)
µ +A(1)

µ + 0(θ)2,

which means the second term is small. Likewise, we consider the nucleus radius, R
nuc

=
R ∼ 10−15m, so R, which has a reference to the proton diameter. Based on the nucleus
radius, space is divided into two parts, r < R and r > R. By appending < or > indices,
we distinguish the quantities related to these areas. For the nucleus case, the distribution
function is

j(0)
0 <

=
Ze

4π
3 R

3
, j(0)

0 >
= 0.

This implies that the current density

j(0)
(<)>

= 0,

and it is obvious that,
lim
R→0

j(0)
0 <

→ Zeδ(r).

A(0)
0 <

and A(0)
0 >

are solutions to Maxwell’s equations of motion:

□(A(0)
µ +A(1)

µ + · · · ) = −1

c
(j(0)µ + j(1)µ + · · · ).

Which provides 
□A(0)

0 (>)<
= −j(0)0 (>)<

□A(0)
(>)<

= − 1
c j

(0)
(>)<
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with the conditions A(0)
<

= A(0)
>

|R and ∂rA
(0)
<

= ∂rA
(0)
>

|R. Due to the linearity of the
dependence on non-commutativity,

□A(1)
0 (>)<

= −j(1)0 (>)<

□A(1)
(>)<

= − 1
c j

(1)
(>)<

(7)

Without non-commutative effects,

A(0)
0 <

= − Ze
8πR3

r2 +
3Ze
8πR

,

and

A(0)
0 >

=
Ze
4πr

. (8)

The nucleus, as a sphere of radius R carries a uniform surface charge distribution Q based
on volume density j0 , is rotated about a diameter with constant angular velocity ωω = ωẑ,
which is proportional to nucleus spin. This is a semi-classical analogy and can be defended
by assuming a lump nucleus. One finds:

J(0)
<

= σωω ∧ r, J(0)
>

= 0.

According to the Maxwell’s equation,

A(0)
>

=
σR4

3cr3
ωω ∧ r, A(0)

<
=
σR

3c
ωω ∧ r. (9)

The compatibility of equation (7) is the basis of the calculations. In this work, first we obtain
the modified currents according to equation (6) of SW’s approach, and then we try to find
the solutions of the generalized Maxwell’s equations based on equation (7). By finding the
modified fields using Bopp’s shift method, we show the inconsistency of the results in the
first order of the non-commutative parameter.
When θ0α = 0, [31,32], equations (2) and (6) give

j̆11 < = j(0)
1 <

− gθ12A(0)
1 <

∂2j
(0)
1 <

− gθ21A(0)
2 <

∂1j
(0)
1 <

+ gθ12F (0)
21 <

j(0)
1 <

+
1

2
gθ12F (0)

12 <
j(0)
1 <

+
1

2
gθ21F (0)

21 <
j(0)
1 <

= −σω(1 + g

3c
θ12σωR)y

2
,

(10)

and repeating the same calculations for j̆
22 <

= σω(1 + g
3cθ

12σωR)y
1
, we have

J̆
<
= σ(1 +

g

3c
θ12σωR)ωω ∧ r. (11)

So, without any change in J(0)
<

and initial conditions, also if β1 := (1 + g
3cθ

12σωR), thus we
reach to

J̆
<
= β1σωω ∧ r. (12)

Clearly, J
>

does not change; J(1)
>

= 0.

J̆
>
= J

>
. (13)
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Equations (12) and (13) mean there is no change in the general form of currents J
(<)>

,
compared to equation (11). Substituting β1ωω =: ΩΩ instead of ωω, the solution of the relevant
regions’ equations of motion is predicted. Thus, equation (9) becomes:

Ă
SW

>
=
σR4

3cr3
ΩΩ ∧ r, Ă

SW

<
=
σR

3c
ΩΩ ∧ r. (14)

Now, similarly, we have

j̆
0 < = j(0)

0 <
− gθ12A(0)

1 <
∂2j

(0)
0 <

− gθ21A(0)
2 <

∂1j
(0)
0 <

+
1

2
gθ12F (0)

12 <
j(0)
0 <

+
1

2
gθ21F (0)

21 <
j(0)
0 <

=
3Ze
4πR3

(1 +
2g

3c
θ12σωR), (15)

likewise

j̆
0 >

= j(0)
0 >

− gθ12A(0)
1 >

∂2j
(0)
0 >

− gθ21A(0)
2 >

∂1j
(0)
0 >

+
1

2
gθ12F (0)

12 >
j(0)
0 >

+
1

2
gθ21F (0)

21 >
j(0)
0 >

= 0. (16)

By defining β2 = (1 + 2g
3c θ

12σωR) and absorbing it in Z, we will have

Ă
SW

0 <
= − Z̆e

8πR3
r2 +

3Z̆e
8πR

, Ă
SW

0 >
=

Z̆e
4πr

. (17)

There is a point to be mentioned, and that is, according to the relationship of the difference
of the coefficient of change in relations (10) and (15), it seems that ψ in relation (6) has a
value of 1

2 . In this case, with the same change weight, we should be justified in applying the
effect of geometric non-commutation to the current vector. In this situation, β1 and β2 will
be the same, and their attraction will be determined.

2.1 Comparison of Bopp’s shift and SW’s methods
In the following, the potential is re-obtained by applying Seiberg-Witten’s approximation,
without solving the equation of motion. With the following calculations in the Seiberg-
Witten’s approach, it is possible to understand the difference in the order of disorder due to
the non-commutativity geometry. If γ := σωR4

3c , then from equation (3),

A(1)
>

= −g
2
θαβA(0)

α >
(2∂βA

(0)
>

−∇A(0)
β >

),

one finds

A
(1)SW

i >
= −3g

2
θijγ

2r−6yj +
6g

2
θijγ

2r−8yjyjyj +
6g

2
θijγ

2r−8yiyjyi + ai(r, θ),

as well as

A
(1)SW

3 >
= −gθ12 γ

2

r8
y1y2y3 + a3(r, θ), (18)

also,

A
(1)SW

0 >
= −ZegσωR4

12πcr6
θ12(y22 + y21) + a0(r, θ), (19)
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where ∇2aµ = 0, is the general solution, and a
µ
(r, θ) = κ

µ
θkµy

k
+ · · · . In an ambiguous

approach but practical way, the modified potential fields may be obtained from equation (3)
[3]. But, these results cannot be more correct than the results we obtained from solving the
modified Maxwell’s equations (14) and (17). Because our answers are the solutions of trans-
formed motion equations, while results 3 and 4 should apply to the conditions of connection,
etc. In the first approximation of the non-commutativity, the difference is significant. The
potentials obtained by solving the equations of motion are different from the solutions that
we will get from Seiberg-Witten’s correction method. We expect that, due to the linearity of
the dependence on the non-commutative parameter, we can use the linearity superposition
rule and obtain the same results. But it doesn’t seem that way. Equation (8) does not reach
equation (19) using Bopp’s shift method:

ŷi := yi − θij

2ℏ
p̂j . (20)

In the following, we set θθ = (0, 0, θ), and because of the simplicity of the calculations.
A simple estimate shows: r̂−n = r−n + nθθ·L

2ℏ r−n−2 + 0(θ)2 which results in the following
relationship:

Ă
BS

0 >
=

Ze
4πr

+
Ze

16πℏr3
θθ · L. (21)

For the vector potential equation (9), by setting ω̂ω = ωω
ω , we will have:

Ă
BS

>
=
γ

r̆3
ω̂ω ∧ r̆ =

γ

r̆2
ω̂ω ∧ r̂

=
γ

r2
ω̂ω ∧ r̂ + 1

ℏ
γ

r4
ω̂ω ∧ r̂ (θθ · L)

=
γ

r3
ω̂ω ∧ r+

γ

ℏr5
ω̂ω ∧ r (θθ · L). (22)

Equations (14) and (17) are not equal to (21) and (22) in any way, although, the expansion
of functions in Bopp’s shift method should be extracted from their direct multiplication. In
terms of quantity, the existence of Lz is not a problem; the main problem after dependence
on the coefficients is the behavior of rn in the denominator. According to the above, the
understandable result is the correctness of all these approaches: Seiberg-Witten’s relations,
solving the equation of motion, or exploiting Bopp’s shift method. However, the present
work is based on Seiberg-Witten’s approach.

3 Energy modification
In the following, our calculations are only in the region r > R. Thus, we can drop the
separator indicator from this area. In addition, all the quantities that come after will
belong to the area r > R. Here, we estimate the order of γ, numerically and estimated,
without imagining their dimensions, and according to the Heaviside units values. The results
were obtained without considering the effects of the parameters of the non-commutativity
geometric and the nucleus rotating frequencies. Therefore, the deletion of some terms can
be referred to as the above estimate. β1 and β2 show that the coupling constant with its
coefficient is equal to the dimensionless character, that is, [gH ] [θ][σ][R][ω]

[c] = 1, and finally,
[gH ] = C−1 ≡ 1

e . In this way, the coefficients of variations, b1 and β2, are also equal to
gσR
3c θω ∝ θω. In an approximate calculation, the nucleus’s rotating frequency can be of
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order 105Hz, so the value of θ is a determining factor. However, the rotation of the nucleus
alone, without the contribution of the non-commutative parameter, will be effective. For
the electrons from the region r > R, the covariant momentum Π̂ is given by

Π̂ = p̂− gĂ>

In the first order of θ, the operator of momentum becomes:

Π̂
SW

=p̂− g
σR4

3cr3
ΩΩ ∧ r̂.

Comparing the order of the terms in equations (14) and (18), we can ignore terms with
a higher order of (A(1)

>
)2 or, in the stronger case, we ignore (A>)

2. The Hamiltonian is
summarized as

Ĥ
SW

=
Π̂2

2µ
+ Veff (r; θ,R),

where

V
SW

eff (r; θ, a) = −Ze2

4πr
− Ze2gσωR

6cπr
θ12. (23)

It is evident that the effective potential contains the nucleus rotation frequency and is
different from the potential offered in [3,33]. Finally, the perturbation potential is:

Ĥ(r; θ; γγ) =
1

2µ
P̂ · P̂− Ze2

4πr
− Ze2gσωR

6cπr
θ12 − g

σR4

6cµr3
ωω · L− g

gσ2ω2R5

18c2µr3
θθ · L. (24)

Equation (24) yields the energy for first-order perturbation:

∆E
Rotating Nuc

NC
=< nljm|Ĥp|nljm > . (25)

It can be seen that in calculating the < ńĺḿ|Lz

rk
|nlm > expression, the result will be propor-

tional to δńnδĺlδḿm. We will include the recent impression in the final result. For the chosen
case of non-commutativity, by substituting the second part of equation (23) in equation
(25), equation (25) becomes,

∆E
Rotating Nuc

NC
= −ZeσR

6cπ
ωθ < r−1 > − σR4

6ceµ
ω(1 +

σR

3ec
ωθ) < Lzr

−3 > .

We also know that

< r−1 > =
1

n2a0
,

< Lzr
−3 > =

2Z3mℏ
a30n

3l(l + 1)(2l + 1)
:=

u3(Z, l)mℏ
a30n

3
.

So we have,

∆E
Rotating Nuc

NC
= −ZeσR

6cπ
ωθ

1

n2a0
− σR4

6ceµ
ω(1 +

σR

3ec
ωθ)

u3(Z, l)mℏ
a30n

3
.

(26)
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By calculating the order of appearing terms in equation (26), one can obtain the first-order
correction to the energy in each layer and sub-layer. Now, we choose the comparison of total
energy correction with Bopp’s shift and Seiberg-Witten’s method as the main goal. In this
way and based on the perturbed theory, relations (17) and (21) give:

∆E
Bop

NC(0)
= − Ze2

16πℏ
<
θθ · L
r3

>,

∆E
SW

NC(0)
= −ZeθσωR

6cπ
<

1

r
> .

Corresponding to the scalar potential only,

∆E
Bop

NC(0)

∆ESW

NC(0)

≈ cR

ωa20
.

The difference in the order of the results is very significant. This ratio shows that the
magnitude of correction due to Bopp’s shift is 106 times the one caused by SW mapping.
Therefore, the correction of the electron energy levels in a hydrogen-like atom calculated by
the SW map and Bopp’s shift methods, are not equivalent to one another.
Of course, with a change in ĂSW

0 >
, there is a change in the vertex function, V̆ = V

0

+V1. Up
to the first order in θ, the vertex function is appropriated with

V
SW

= V
(0)

+ eF1(0)A
(1) SW

0 >
,

in this regard, F1(0) is the structure factor. In the one-loop order, the vertex correction is,

V
(1) SW

> Correc
= F1(0)

β2 − 1

4πr
Ze2.

The final relationship is different from the result obtained in [15], which was based on the
method of Bopp’s shift. Furthermore, with a change in A> , a change in B> and then a
change in torque µ is created, µ̆ = µ

(0)

+ µ
(1) . In this case,

µ
(1) SW

Correc
=

e

2m
(F1(0) + F2(0))σB̃

(1) SW

>
,

where B̃(1) SW

k >
(q) ∝ ϵijkqiÃ

(1) SW

j >
(q), is the Fourier transformation of the relevant magnetic

fields. The changes are quite evident from Bopp’s shift method.

4 Discussion
At the level of quantum mechanics, we found a way to determine the contribution of the
rotating nucleus to the electron energy levels. We extracted the Hamiltonian of a system at
the classical mechanics level by exploiting the Seiber-Witten map based on the θ deformed
electrodynamics. We showed that the Hamiltonian changes from the official version by
entering the size of the nucleus in the electrodynamics equations. It was determined that
the dependence of the energy corrections depends on the orbital angular momentum of
the electron and the frequency of the rotating nucleus. We also proved that the energy
corrections from the SW maps and Bopp’s shift method are different, and their ratio is in
the order of 106. Based on this paper, the magnetic dipole moments of the electron as well
as the vertex function in the order of one-loop, have many variations that come from the
amount of their values given in Ref. [15].
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