Self-Similar Properties of the Proton Structure at Low x within the xFitter framework

Document Type : Regular article

Authors

1 School of Particles and Accelerators, Institute for Research in Fundamental Sciences (IPM), P.O.Box 19395-5531, Tehran, Iran;

2 Department of Physics, Faculty of Nano and Bio Science and Technology, Persian Gulf University, 75169 Bushehr, Iran;

3 Department of Physics, Ferdowsi University of Mashhad, P.O.Box 1436, Mashhad, Iran;

Abstract

The structure of the proton exhibits Fractal behavior at low x, where x is the fraction of the proton's momentum carried by the interacting partons. This Fractal behavior is characterized by self-similar properties at different scales and can be quantified using the concept of Fractal dimension. An investigation into the Fractal properties of the proton structure at low x is critical for understanding the fundamental properties of the strong force and developing a more comprehensive understanding of the hadron structure.Fractals, characterized by self-similar patterns across scales, demonstrate a direct correlation between their Fractal dimension and entropy, where higher Fractal dimensions correspond to increased informational content. Furthermore, it is essential for designing high-energy physics experiments and developing more accurate models of subatomic particle interactions. This paper has a fresh look at the self-similar properties of the proton structure at low x. Our study involves the use of the xFitter framework to parameterize the proton structure functions with a Fractal formalism at low x. We also examine how the inclusion of new data affects the results of our analysis.

Keywords

Main Subjects

 

Article PDF

[1] C. Adloff and et al. [H1], “On the rise of the proton structure function F(2) towards low x”, Phys. Lett. B 520, 183 (2001) [arXiv:hep-ex/0108035 [hep-ex]], DOI: 10.1016/S0370-2693(01)01074-7
[2] H. Abramowicz and et al. [H1 and ZEUS Collaborations], “Combination of measurements of inclusive deep inelastic e±p scattering cross sections and QCD analysis of HERA data”, Eur. Phys. J. C 75, 580 (2015) [arXiv:1506.06042 [hep-ex]], DOI:10.1140/epjc/s10052-015-3710-4
[3] F. D. Aaron and et al. [H1], “Measurement of the Inclusive e\pmp Scattering Cross Section at High Inelasticity y and of the Structure Function FL”, Eur. Phys. J. C 71, 1579 (2011) [arXiv:1012.4355 [hep-ex]], DOI: 10.1140/epjc/s10052-011-1579-4
[4] F. D. Aaron and et al. [H1 and ZEUS], “Combined Measurement and QCD Analysis of the Inclusive e+- p Scattering Cross Sections at HERA”, JHEP 01, 109 (2010) [arXiv:0911.0884 [hep-ex]], DOI: 10.1007/JHEP01(2010)109
[5] T. Lastovicka, “Selfsimilar properties of the proton structure at low x”, Eur. Phys. J. C 24, 529 (2002) [hep-ph/0203260], DOI: 10.1007/s10052-002-8893-9
[6] T. Lastovicka, “Measurement of the Inclusive Deep Inelastic Scattering Cross Section at low Q2”, (2004), DOI: 10.3204/DESY-THESIS-2004-016
[7] D. K. Choudhury and R. Gogoi, “Comments on Fractality of Proton at Small x”, (2005) [arXiv preprint hep-ph/0503047], DOI: 10.48550/arXiv.hep-ph/0503047
[8] A. Jahan and D. K. Choudhury, “Self-similarity and the Froissart bound”, Phys. Rev. D 89, 014014 (2014) [arXiv:1401.4327 [hep-ph]], DOI: 10.1103/PhysRevD.89.014014
[9] D. K. Choudhury, B. Saikia and K. Kalita, “Momentum Fractions carried by quarks and gluons in models of proton structure functions at small x”, Int. J. Mod. Phys. A 32, 1750107 (2017) [arXiv:1608.02771 [hep-ph]], DOI: 10.1142/S0217751X1750107X
[10] S. S. Mohsenabadi, S. A. Tehrani and F. Taghavi-Shahri, “Proton structure functions at low x: the Fractal distributions”, Int. J. Mod. Phys. A 38, 2350136 (2023) [arXiv:2112.03373 [hep-ph]], DOI: 10.1142/S0217751X23501361
[11] J. R. Mureika, “Fractal holography: A Geometric re-interpretation of cosmological large scale structure”, JCAP 05, 021 (2007) [arXiv:gr-qc/0609001 [gr-qc]], DOI:10.1088/1475-7516/2007/05/021
[12] A. Sapronov [HERAFitter Team], “HERAFitter - an open source QCD fit framework”, J. Phys. Conf. Ser. 608(1), 012051 (2015) DOI: 10.1088/1742-6596/608/1/012051
[13] N. A. Abdulov, A. Bacchetta, S. Baranov, A. Bermudez Martinez, V. Bertone, C. Bissolotti, and et al. “TMDlib2 and TMDplotter: a platform for 3D hadron structure studies”, Eur. Phys. J. C 81, 752 (2021) [arXiv:2103.09741 [hep-ph]], DOI: 10.1140/epjc/s10052-021-09508-8
[14] H. Abdolmaleki and A. Khorramian, “Parton distribution functions and constraints on the intrinsic charm content of the proton using the Brodsky-Hoyer-PetersonSaka approach”, Phys. Rev. D 99, 116019 (2019) [arXiv:1903.02583 [hep-ph]], DOI: 10.1103/PhysRevD.99.116019
[15] A. G. Tooran, A. Khorramian and H. Abdolmaleki, “QCD analysis of structure functions in deep inelastic neutrino-nucleon scattering without using the orthogonal polynomials approach”, Phys. Rev. C 99, 035207 (2019) [arXiv:1903.00514 [hep-ph]], DOI: 10.1103/PhysRevC.99.035207
[16] A. Vafaee and A. N. Khorramian, “The role of different schemes in the QCD analysis and determination of the strong coupling”, Nucl. Phys. B 921, 472 (2017) [arXiv:1709.08346 [hep-ph]], DOI: 10.1016/j.nuclphysb.2017.06.011
[17] M. Hirai, S. Kumano, T. H. Nagai and K. Sudoh, “Determination of fragmentation functions and their uncertainties”, Phys. Rev. D 75, 094009 (2007) [arXiv:hep-ph/0702250 [hep-ph]], DOI: 10.1103/PhysRevD.75.094009
[18] J. Pumplin, D. Stump, R. Brock, D. Casey, J. Huston, J. Kalk, H. L. Lai and W. K. Tung, “Uncertainties of predictions from parton distribution functions. 2. The Hessian method”, Phys. Rev. D 65, 014013 (2001) [arXiv:hep-ph/0101032 [hep-ph]], DOI: 10.1103/PhysRevD.65.014013
[19] J. Pumplin, D. R. Stump, J. Huston, H. L. Lai, P. M. Nadolsky and W. K. Tung, “New generation of parton distributions with uncertainties from global QCD analysis”, JHEP 07, 012 (2002) [arXiv:hep-ph/0201195 [hep-ph]], DOI: 10.1088/1126-6708/2002/07/012
[20] A. D. Martin, R. G. Roberts, W. J. Stirling and R. S. Thorne, “Uncertainties of predictions from parton distributions. 1: Experimental errors”, Eur. Phys. J. C 28, 455 (2003) [arXiv:hep-ph/0211080 [hep-ph]], DOI: 10.1140/epjc/s2003-01196-2
[21] J. Blumlein and H. Bottcher, “QCD analysis of polarized deep inelastic data and parton distributions”, Nucl. Phys. B 636, 225 (2002) [arXiv:hep-ph/0203155 [hep-ph]]. DOI:10.1016/S0550-3213(02)00342-5
[22] M. Hirai, S. Kumano and N. Saito, “Determination of polarized parton distribution functions with recent data on polarization asymmetries”, Phys. Rev. D 74, 014015 (2006) [arXiv:hep-ph/0603213 [hep-ph]], DOI: 10.1103/PhysRevD.74.014015
[23] E. Leader, A. V. Sidorov and D. B. Stamenov, “Longitudinal polarized parton densities updated”, Phys. Rev. D 73, 034023 (2006) [arXiv:hep-ph/0512114 [hep-ph]], DOI: 10.1103/PhysRevD.73.034023
[24] D. de Florian, G. A. Navarro and R. Sassot, “Sea quark and gluon polarization in the nucleon at NLO accuracy”, Phys. Rev. D 71, 094018 (2005) [arXiv:hep-ph/0504155 [hep-ph]], DOI: 10.1103/PhysRevD.71.094018
[25] M. Hirai, S. Kumano and T. H. Nagai, “Nuclear parton distribution functions and their uncertainties”, Phys. Rev. C 70, 044905 (2004) [arXiv:hep-ph/0404093 [hep-ph]], DOI: 10.1103/PhysRevC.70.044905
Volume 4, Issue 2
June 2024
Pages 27-42
  • Receive Date: 21 March 2024
  • Revise Date: 03 May 2024
  • Accept Date: 07 May 2024