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Abstract. The structure of the proton exhibits Fractal behavior at low x, where x
is the fraction of the proton’s momentum carried by the interacting partons. This
Fractal behavior is characterized by self-similar properties at different scales and can
be quantified using the concept of Fractal dimension. An investigation into the Fractal
properties of the proton structure at low x is critical for understanding the fundamen-
tal properties of the strong force and developing a more comprehensive understanding
of the hadron structure. Fractals, characterized by self-similar patterns across scales,
demonstrate a direct correlation between their Fractal dimension and entropy, where
higher Fractal dimensions correspond to increased informational content. Furthermore,
it is essential for designing high-energy physics experiments and developing more ac-
curate models of subatomic particle interactions. This paper has a fresh look at the
self-similar properties of the proton structure at low x. Our study involves the use of
the xFitter framework to parameterize the proton structure functions with a Fractal
formalism at low x. We also examine how the inclusion of new data affects the results
of our analysis.
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1 Introduction
The proton is a subatomic particle that is composed of smaller particles called quarks and
gluons. At high energies, the structure of the proton can be described using the theory
of quantum chromodynamics (QCD), which predicts that a strong force binds together the
quarks and gluons.

At low energies or low momentum transfers, the proton structure becomes more complex
and difficult to describe only using QCD. The proton structure function, F2(x,Q

2), goes up
with Q2 at low Bjorken x (the fraction of the proton’s momentum carried by the interacting
parton), which indicates rapid growth of the partons at low x. The experiments show that
the number of partons inside a proton goes up at low x, and falls at high x [1–4]. Proton has
three valence quarks that are more significant at low Q2, but at high Q2, the sea quarks,
which are quark-antiquark pairs, increase in number and have an important role at small x.
Because the knowledge of these densities at a much smaller value of x will be needed for any
collider predictions, then it is crucial to know how PDFs behave at low x. It is shown that
the structure of the proton can be characterized by the concept of Fractals, which are objects
that exhibit self-similar properties at different scales [5–10]. Fractals possess a holographic
nature too. Intriguingly, Fractals are members of a fundamental class of statistical objects,
with their basis lying at the heart of information theory. The holographic principle is a con-
cept in theoretical physics that suggests that the information content of a certain region of
space can be fully encoded on its boundary. Fractals manifest in various aspects of nature.
Scientists were led by Fractals to the realization that apparent chaos in fact structured. It
appears that the complex phenomena have a hidden order. The holographic principle and
Fractals exhibit an intricate interplay, underpinned by their shared understanding of infor-
mation organization in the universe. Fractals, characterized by self-similar patterns across
scales, demonstrate a direct correlation between their Fractal dimension and entropy, where
higher Fractal dimensions correspond to increased informational content. This connection is
rooted in information theory, which posits that complex, self-similar systems, like Fractals,
can be more efficiently encoded. The holographic principle builds upon this, proposing that
the information within a given volume can be fully described by the information encoded on
its boundary, akin to a hologram. Crucially, the Shannon entropy of a system, a fundamen-
tal information-theoretic measure, is directly related to its Fractal dimension, suggesting
the universe’s underlying structure may be Fractal-like, enabling the efficient storage and
transmission of information as envisaged by the holographic principle [11].

One way to quantify the Fractal properties of the proton structure at low x is to use the
concept of Fractal dimension in the PDFs parameterized by the Fractal distributions. The
Fractal distributions are a type of probability distribution that is statistically self-similar
and look the same at different scales. Understanding the Fractal patterns of the proton at
low x is essential for learning more about the basic properties of the strong force and the
hadron structure. It also affects high-energy physics experiments that rely on the proton
structure to predict the results of particle collisions.

In this paper, we have a fresh look at the self-similar properties of the proton structure
at low x. We used the xFitter [12] framework to determine the Fractal PDFs and proton’s
reduced cross-section at the low x region by including a selection of data sets (500 data
points) from the combined HERA I+II deep-inelastic scattering data [2]. The various PDF
fits are performed to four different data sets:

(i) inclusive HERA I+II cross-section data at 920 (GeV),

(ii) inclusive HERA I+II cross-section data at 920 and 820 (GeV),
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(iii) inclusive HERA I+II cross-section data at 920, 820, and 575 (GeV),

(iv) inclusive HERA I+II cross-section data at 920, 820, 575, and 460 (GeV).

Then, the impact of adding each data set on the proton’s reduced cross-section is investi-
gated.

This paper is organized as follows: In Section 2, we provide a concise overview of the
Fractal dimension and the Fractal distributions that we need to study the proton structure.
Section 3 describes the parametrization of the structure-function based on Fractal formalism,
which is a key quantity used in this analysis. Next, in Section 4, we discuss the fitting
procedures used in the QCD analysis of the data. Finally, in Section 5, we summarize
the key findings of the study and present our conclusions regarding the implications of our
results. Following this structure, we aim to provide readers with a clear and comprehensive
understanding of the theoretical concepts, data analysis techniques, and results presented
in this paper.

2 The Fractal Dimension and the Fractal Distribution
The concept of the Fractal dimension requires an understanding of the meaning of the
term ”dimension.” In non-fractional dimensions, the number of dimensions corresponds to
the number of independent directions in a corresponding coordinate system. For example,
as shown in Figure 1 a line has dimension 1, a square has dimension 2, and a cube has
dimension 3. However, Fractal objects such as the Sierpinski gasket, shown in Figure 2,
require a more general definition of dimension than traditional Euclidean geometry. It is
shown in Figure 1 that the traditional notions of geometry for defining dimension can be
linked to the self-similarity property by this relation:

D =
log(number of self similar objects)

log(magnification factor) =
log(N)

log(r)
, (1)

here r is the number of each side segment (Magnification factor) and N is the number of
self-similar shapes created by the segmentation. It means when a line is divided in the
middle, two lines of half-length are obtained. By magnifying one of them by a factor of
two, the original line can be reconstructed. The same principle applies to dividing a square
into four smaller squares or a cube into smaller cubes. Similarly, as another example, if the
magnification factor for a square is 3, then the number of smaller squares will be 32 = 9.
In a similar fashion, a cube magnified by a factor of 3 will result in 33 = 27 smaller cubes.
According to this relation, for example for 3 segmentation case, we would obtain the values
of D= log(3)

log(3)=1 for the dimension of line, D= log(32)
log(3) =2 and D= log(33)

log(3) =3 for the dimensions
of square and cube, respectively.

To quantify the dimension of a Fractal object, one cannot simply use the definition
existing for dimension, as this approach fails to capture the complex and self-similar structure
of Fractals. Instead, the concept of the Fractal dimension provides a more nuanced definition
that captures the self-similarity and irregularity of Fractal objects. The Fractal dimension
of an object can be thought of as a measure of how much space it fills, relative to its
size. The Sierpinski gasket, for example, is a Fractal object that is formed by repeatedly
removing triangles from a larger triangle. As the process is repeated infinitely many times,
the Sierpinski gasket exhibits self-similarity at different scales. Using equation (1), the
Fractal dimension of the Sierpinski gasket is approximately 1.585, which is a non-integer



30 Shahin Atashbar Tehrani et al.

value that reflects its complex and irregular structure. In iteration No. 1, for example, we
have

D =
log 3

log 2
≈ 1.585. (2)

Fractal objects, on the other hand, have non-integer dimensions and exhibit self-similarity at
all scales. In contrast to traditional geometric shapes, real Fractals in nature do not exhibit
the same degree of self-similarity for all magnification factors, and the number of self-similar
objects changes in a more complex manner. The concept of the Fractal dimension provides
a way to quantify the self-similarity and irregularity of the Fractal objects.

Figure 1: Regular self-similarity in Eclidian space

Figure 2: Sierpinski gasket Fractal in iterations No. 1, 3 and 6 (from left). Iteration No. 1
corresponds to the seed image which is arbitrary while the iteration always converges to the same
object.

The concept of the Fractal dimension can also be extended to non-discrete Fractals, where the
magnification factor is a real number z and the number of self-similar objects is represented
by a density function f(z). In this case, the dimension may vary with the scaling factor and
a local dimension can be defined as the logarithmic derivative of the density function:

D(z) = lim
z→0

log f(z)

log z
. (3)
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Figure 3: The prediction for the reduced cross-section in the low x region below x < 0.001 for
Q2 = 3.5GeV 2, Q2 = 2GeV 2, Q2 = 20GeV 2, and Q2 = 25GeV 2 (Ep = 460GeV ). Data points are
from NC interactions in HERA positron- proton DIS processes for fit-4serires data.

Here, f(z) represents the density of self-similar objects at scale z. We can rewrite equation
3 as:

log f(z) = D · log z +D0, (4)
where D0 defines the normalisation of f(z), which thus has a power law behaviour, f(z) ∝ zD.
In general, Fractals may have two independent magnification factors, z and y. In this case
the density f(z, y) is written in the following way [5,6].

log f(z, y) = Dzy · log z · log y +Dz · log z +Dy · log y +D0, (5)

where Dzy demonstrates the dimensional correlation related to two magnification factors, y
and z.
It is important to mention that there is a certain freedom in selecting magnification factors
without changing the shape of the function f(z, y). It is possible to use any non-zero
power of a factor multiplied by a constant: z → azλ , without affecting the underlying self-
similarity of the Fractal distributions. The only effect of such a change is a redefinition of the
dimensional parameters Dz,y,zy and of the normalization D0, respectively. It should be noted
that the Fractal behavior is seen on the shape of the quark distribution functions or PDFs
(parton distribution functions) at low Bjorken- x values, not in the shape of the proton. The
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Figure 4: The prediction for the reduced cross-section in the low x region below x < 0.001 for
Q2 = 8.5GeV 2, Q2 = 12GeV 2, Q2 = 15GeV 2, and Q2 = 20GeV 2 (Ep = 575GeV ). Data points are
from NC interactions in HERA positron- proton DIS processes for fit-1serires data and fit-2serires
data.

parton distribution functions at low x has a linear behavior in log-log space and a power-
law behavior in ordinary phase space of x and Q2. Then we can describe these PDFs with
Fractal distributions. In this work, we want to show that the quark distribution functions
have a monofractal behavior at low x (and Q2) which means it has self-similar properties
with fixed exponents (Fixed Fractal dimension). In the study of proton structure at small-x
values, researchers have observed an increased rate of interactions between gluons, leading
to enhanced densities of both gluons and sea quarks. This phenomenon exhibits Fractal
characteristics, as discussed here, which has sparked interest in applying Fractal formalism
to Parton Distribution Functions (PDFs). The key concept behind this application lies in the
recognition of scaling behaviors following a power law. A notable reference [5] demonstrates
that, when plotted on a log-log scale, the density functions of sea quarks, which depend
on momentum transfer Q2 and the Bjorken variable x specifically for x < 0.01 (outside
the valence quark region), exhibit a linear trend. Consequently, the kinematical variables
x and Q2 emerge as suitable magnification factors. It is important to note that these
magnification factors must be positive, non-zero, and dimensionless. Thus, in addition to x
and Q2, Reference [5] introduces 1/x and 1 + Q2/Q2

0 as magnification factors. The former
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Figure 5: The prediction for the reduced cross-section in the low x region below x < 0.0001 for
Ep = 820GeV . Data points are from NC interactions in HERA positron-proton DIS processes for
fit-1serires data, fit-2serires data, and fit-3serires data.

confirms that as the probing goes deeper into the proton’s structure and x approaches zero,
the magnification factor increases accordingly. The latter normalizes the physical dimension
of Q2 by dividing it with a constant Q2, preventing the issue of Q2 = 0 by adding 1 to
the ratio Q2/Q2

0. With these preparations in place, all the necessary components are ready
to begin depicting the proton’s structure function at low x values using the framework of
Fractal formalism. The following section is dedicated to outlining the parameterization of
quark Parton Distribution Functions (PDFs) within the context of the Fractal framework.

3 Parametrization of the Structure Function
The concept of self-similarity, when applied to the structure of the proton’s confinement,
leads to a simple parametrization of quark densities within the proton. This parametrization
is based on equation (5), and can be constructed using magnification factors 1/x and 1 +
Q2/Q2

0 [5]. The distributions described by equation 5 have linear behavior in log-log space.
This linearity is also found for unintegrated sea quark densities at low x and k2t [13]. An
unintegrated quark density may be written in the following general form:
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Figure 6: The prediction for the reduced cross-section in the low x region below x < 0.01. Data
points are from NC interactions in HERA positron-proton DIS processes for fit-1serires data, fit-
2serires data, fit-3serires data, and fit-4serires data.
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fit-4serires data.
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Figure 8: The xq(x,Q2) form Fractal model in xFitter (Lo approximation and only quark PDfs)
and those from [10] (NLO approximation with quark and gluon PDFs).

Table 1: The list of all data sets: DIS HERA I+II used in the present analysis. For each
data set, we indicate process, measurement, reference and the ranges of their kinematic cuts
such as x, Q2 (GeV2).

Data set Experiment Ref. Kinematic ranges and details
HERA I+II

σr,NC HERA I+II NC e−p 460 [2] 1 ≤ Q2 ≤ 100, 1× 10−6 ≤ x ≤0.01
HERA I+II NC e−p 575 [2] 1 ≤ Q2 ≤ 100, 1× 10−6 ≤ x ≤0.01
HERA I+II NC e+p 820 [2] 1 ≤ Q2 ≤ 100, 1× 10−6 ≤ x ≤0.01
HERA I+II NC e+p 920 [2] 1 ≤ Q2 ≤ 100, 1× 10−6 ≤ x ≤0.01

log fi(x,Q
2) = D1 · log

1

x
· log(1 + Q2

Q2
0

) +D2 · log
1

x
+D3 · log(1 +

Q2

Q2
0

) +Di
0, (6)

where i denotes a quark flavor. Following equation (5), D1,D2 and, D3 are the Fractal
dimensions related to x and Q2 parameters respectively. The normalization parameter Di

0

is related to each kind of partons. Conventional, integrated quark densities qi(x,Q
2) are

defined as a sum over all contributions with quark virtualities smaller than that of the photon
probe, Q2. Thus, fi(x,Q2) has to be integrated over Q2, yielding the following relationship
between the integrated and unintegrated quark densities:

qi(x,Q
2) =

∫ Q2

0

fi(x, q
2) dq2. (7)

By integrating of equation (7), one can obtain the following analytical expression for the
parametrization of a quark density:

qi(x,Q
2) =

eD
i
0 Q2

0 x−D2

1 +D3 −D1 log x

(
x
−D1 log(1+Q2

Q2
0
)
(1 +

Q2

Q2
0

)D3+1 − 1

)
. (8)
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It is important to note that in this parametrization, only the normalization parameter Di
0

depends on the quark flavor, while the other parameters are independent of flavor. This
assumption implies that all quarks follow the same Fractal structure, i.e., the dimensions Di

and magnification factors are common for all quarks, and they differ only in normalization.
The proton structure function F2 is directly related to the quark densities, given by

F2 = x
∑
i

e2i (qi + q̄i). Therefore, assuming the flavour symmetry of equation (8), we can

express F2 directly in terms of the parameters in equation (8) by replacing x−D2 with x−D2+1

and introducing a common normalisation factor eD0 , as follows:

F2(x,Q
2) =

eD0 Q2
0 x−D2+1

1 +D3 −D1 log x

(
x
−D1 log(1+Q2

Q2
0
)
(1 +

Q2

Q2
0

)D3+1 − 1

)
,

FL(x,Q
2) = F2(x,Q

2)× R

1 +R
.

(9)

A free parameter R will be set by global analysis. To investigate the internal structure of the
proton at low values of x, one must analyze the reduced cross-section data obtained from
e±p Deep Inelastic Scattering (DIS) processes at low x. For unpolarized e±p scattering, the
reduced cross-section at low Q2 values, i.e. Q2 ≪ M2

Z , can be expressed as [3]:

σr,NC = F2(x,Q
2)− y2

Y+
FL(x,Q

2) , (10)

where the kinematic variables x, Q2, and y are defined as:

Q2 = −q2, : x =
Q2

2(P.q)
, : y =

(P.q)

P.k
. (11)

Here, P , k, and q denote the four-momentum of the incoming proton, incoming lepton, and
exchanged boson, respectively, and Y+ = 1 + (1− y)2. It should be noted that for y values
larger than approximately 0.5, the contribution of the longitudinal structure function FL

becomes significant. The detailed information for each data set is summarized in Table 1.

Table 2: The numerical values and their uncertainties extracted for parameters related to
fit-4serires data, fit-3serires data, fit-2serires data, and fit-1serires data.

Parameter fit-4ser. data fit-3ser. data fit-2ser. data fit-1ser. data
’D0’ 1.60± 0.24 1.83± 0.31 1.95± 0.36 1.69± 0.31
’D1’ 0.0807± 0.0016 0.0793± 0.0016 0.0793± 0.0017 0.0798± 0.0019
’D2’ 0.992± 0.010 0.986± 0.012 0.982± 0.013 0.991± 0.013
’D3’ −1.339± 0.013 −1.321± 0.014 −1.318± 0.014 −1.330± 0.015
’Q2

0’ 0.067± 0.010 0.0566± 0.0099 0.0524± 0.0099 0.062± 0.012
’R’ 0.347± 0.020 0.366± 0.022 0.383± 0.024 0.393± 0.027
Fit status converged converged converged converged

4 Fitting Contents and results
In this section, we utilize experimental data obtained from HERA to study electron (positron)-
proton scattering in DIS processes within the xFitter framework. The H1 and ZEUS Collab-
orations investigated a vast kinematical phase space in (x,Q2), where the experimental data
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Table 3: The numerical values and their uncertainties extracted for parameters related to
Ref. [5] and Ref. [10].

Parameter Ref. [5] Ref. [10]
’D0’ 0.330± 0.195 4.81± 0.01
’D1’ 0.073± 0.001 −0.0051± 0.00009
’D2’ 1.013± 0.01 1.138± 0.002
’D3’ −1.287± 0.01 −1.285± 0.005
’Q2

0’ 0.062± 0.010 0.0187± 0.0001
Fit status converged converged

Table 4: The numerical results for the correlated χ2, log penalty χ2, total χ2 and the total
χ2/ degree of freedom (dof) of each data sets for different fit-4serires data, fit-3serires data,
fit-2serires data and fit-1serires data.

Dataset fit-4ser. data fit-3ser. data fit-2ser. data fit-1ser. data
HERA1+2 NCep 820 67 / 41 67 / 41 67 / 41 -
HERA1+2 NCep 460 144 / 111 - - -
HERA1+2 NCep 575 155 / 143 161 / 143 - -
HERA1+2 NCep 920 241 / 211 241 / 211 244 / 211 240 / 211
Correlated χ2 73 56 39 33
Log penalty χ2 +0.69 +1.6 +2.2 +3.2
Total χ2 / dof 680 / 500 527 / 389 353 / 246 276 / 205

covered 0.005 < x < 0.65 and 0.045 < Q2 < 50000GeV 2 for neutral current (NC) interac-
tions and 0.01 < x < 0.4 and 200 < Q2 < 50000GeV 2 for charged current (CC) interactions,
respectively. Since we focus on the low-x region, we select a subset of the combined HERA
data related to NC interactions in the x < 0.01 region. The total number of experimental
data used in our analysis is Ndata = 500, and we summarize them in Table 1.
The following step involves a brief explanation of error estimation and the results we ob-
tained by xFitter [14–16]. xFitter is a powerful tool that provides a flexible platform for
fitting various types of parton distribution functions (PDFs) to experimental data. It in-
cludes a variety of PDF sets, including those based on different parameterizations and fitting
methods, as well as a set of commonly used models for the strong coupling constant and
heavy quark masses. Additionally, xFitter supports the implementation of different types
of systematic uncertainties in the fit, such as experimental and theoretical uncertainties.
To estimate the uncertainties associated with the experimental data used in the fit, xFitter
provides various methods, such as the Hessian method and Monte Carlo methods. The
Hessian method involves calculating the second derivatives of the χ2 function with respect
to the fit parameters at the minimum χ2 point, which can be used to estimate the PDF
uncertainties. On the other hand, Monte Carlo methods involve generating a large number
of pseudo-data sets by adding Gaussian-distributed random errors to the experimental data
and then fitting each of them to obtain a set of PDF replicas. The spread of the resulting
PDF replicas can be used to estimate the PDF uncertainties. It is important to carefully
evaluate the uncertainties associated with the experimental data to ensure that they are
properly taken into account in the fit. This can help to obtain reliable PDFs and associated
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uncertainties, which are essential for making predictions for a wide range of high-energy
physics observable. The χ2-function is a tool to determine how well a particular QCD
model fits experimental measurements. In our analysis, we aim to obtain the best values of
6 independent free parameters by minimizing the χ2-function. When all of the correlated
uncertainties associated with experimental measurements are known, the χ2-function in the
xFitter framework is given by [4]:

χ2 =
∑
i

[di − ti(1−
∑

j β
i
jsj)]

2

δ2i,unct
2
i + δ2i,statditi

+
∑
j

s2j . (12)

The χ2-function presented above calculates the goodness of fit between theoretical pre-
dictions ti and experimental measurements di for each data point i, taking into account
statistical and systematic uncertainties. The systematic uncertainties are categorized as
correlated and uncorrelated, with βi

j and sj representing the corresponding uncertainties
and nuisance parameters, respectively. The δ2i,stat and δ2i,unc terms describe the relative
statistical and uncorrelated systematic uncertainties. In addition to obtaining the central
values of the 6 free parameters, it is essential to determine their uncertainties. The un-
certainties of parton distribution functions have been estimated in several studies by the
Hessian method, such as Refs. [17–25]. One of the most commonly used approaches for es-
timating uncertainties is the Hessian minimum iteration method. We utilize this method in
our QCD analysis and details of this method are available in these references. Four different
fits with the name fit-4serires data, fit-3serires data, fit-2serires data, and fit-1serires data
are introduced in Table 2. The first data set,fit-1serires data, only contains HERA I+II-920
data to prepare a fine base for investigating the impact of other data sets on PDFs. In the
second data set, fit-2serires data, the HERA I+II-820 data are added to the first data set.
The third data set, fit-3serires data, and the HERA I+II-575 data are added to the second
data set. Finally, the third data set, fit-4serires data, and the HERA I+II-460 data are
added to contain all previously mentioned data. According to Table 4 the extracted values
of χ2/dof for (fit-1serires data) are 1.34, (fit-1serires data) 1.43, (fit-3serires data) 1.35, and
(fit-4serires data) 1.36, respectively. We have also a comparison of our results with those
from [5] and [10] in Table 3. The results show an agreement with those from [5] because
we did the same but in the frame of xFitter and also including new data from HERA2015
[2]. The results show a negative value for Fractal dimension of D3. To see why, we revisit
Equation 6 in this paper and also refer to [13]. In [13], the authors demonstrate that the up
quark parton distribution function exhibits a linear behavior with a negative slope in log-log
space at the low x region and also for Q2 greater than 1 GeV 2 (see Figures 1 and 2 in [13]).
This implies that the quark distribution functions in this region can be described by lines
with negative slopes. A line in log-log space corresponds to a power-law function in ordinary
space. We then parameterized the quark distribution functions in this region in equation
(6) with three parameters, D2, D3, and, D1, which represent the Fractal dimensions related
to x and Q2 and, their correlations respectively. Our results also shows this behavior for
quark distribution functions at the low x region, exhibiting linearity with a negative slope.
Note that our PDFs in equation (6) are parameterized as a function of 1

x , not x, and thus
we obtain a positive value for D2. These PDFs are parameterized as a function of Q2 as
D3 · log(1 + Q2

Q2
0
), from which we obtain the negative value for D3.

In Figure 3, the predictions for the reduced cross-section in the low x region below x < 0.001
for Q2 = 3.5GeV 2, Q2 = 2GeV 2, and Q2 = 25GeV 2 at Ep = 460GeV are presented. Data
points are from NC interactions in HERA positron-proton DIS processes for fit-4 series
data. We also have a comparison between the theoretical model and experimental data.
In Figure 4 To evaluate the reduced cross-section in the low x region, specifically below
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x < 0.001, for three different values of Q2 (Q2 = 8.5GeV 2, Q2 = 12GeV 2, Q2 = 15GeV 2,
and Q2 = 20GeV 2) at a proton energy of Ep = 575GeV , data from neutral current (NC)
interactions in positron-proton DIS processes at HERA are utilized. The experimental data
are available as two sets, fit-3series and fit-4series, and are used to compare theoretical mod-
els with the measured values.
In Figure 5, to predict the reduced cross-section in the low x region, specifically below
x < 0.0001, at a proton energy of Ep = 820GeV , data from neutral current (NC) interac-
tions in positron-proton DIS processes at HERA are utilized. The experimental data are
available as three sets: fit-2serires data, fit-3serires data, and fit-4serires data.
In Figure 6 To make predictions for the reduced cross-section in the low x region, specifi-
cally below x < 0.01, data from neutral current (NC) interactions in positron-proton DIS
processes at HERA are utilized. The experimental data points are available as four sets:
fit-1serires data, fit-2serires data, fit-3serires data, and fit-4serires data.
In Figure 7 we show the behavior of the Fractal quark density for fit-4serires data at
Q2 = 2GeV 2, Q2 = 5GeV 2, Q2 = 10GeV 2, and Q2 = 100GeV 2. Finally in Figure 8,
we compare our results with those with did at NLO approximation with including the gluon
distribution function at low x.
This work demonstrates that the Fractal approach is a promising method to investigate the
hadron structure at the low x region. We used the reduced cross-section at the LO approx-
imation and only considered the contribution of sea quarks at the low x region, neglecting
the contribution of gluons. We also used the xFitter framework to study the effect of new
data on the results.

5 Summary and Conclusions
In this paper, we have presented the Fractal parton distribution functions, including HERA
I+II DIS experimental data as a base data set to investigate the proton structure at the
low x region in the xFitter framework. Our analysis incorporates the HERA I+II Deep
Inelastic Scattering (DIS) experimental data as a foundational dataset to scrutinize the
proton structure within the low x (x < 0.01) and Q2 > 1GeV 2 domain, employing the
xFitter framework. By juxtaposing the proton’s reduced cross-section with empirical data,
we find that the Fractal approach provides a plausible description of the physics at low
x. This comparison not only bolsters the validity of the Fractal model but also enhances
our understanding of the proton’s behavior under these conditions. A comparison of the
proton’s reduced cross-section with experimental data shows that the Fractal approach may
describe the low x physics well. Investigating PDFs at low x helps in understanding the
non-perturbative aspects of QCD and the dynamics of parton interactions in this regime.
The behavior of PDFs at low x also influences the parton-parton collision cross sections,
which are fundamental for calculating various scattering processes in particle physics. The
results indicate that the Fractal approach is a promising method, offering novel insights into
the proton structure at low x regions and exploring new frontiers in physics.
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