Massive N=2 Supersymmetric Gauge Theory Under Electric Field Quench

Document Type : Regular article

Author

School of Physics, Damghan University, Damghan, P.O.Box 36716-41167, Iran.

Abstract

This study investigates the non-equilibrium dynamics of massive N=2 supersymmetric gauge theory under pulse-like electric field quenches, utilizing holographic techniques within the AdS/CFT correspondence framework. Focusing on subcritical electric fields, our analysis reveals prolonged oscillations in the electric current as well as the quark condensate dynamics with no dissipation. Notably, through power spectrum analysis of the time-dependent electric current, we identify a dominant frequency in the oscillations, which remains the same within numerical precision across different parameter variations, serving as a universal feature of the system.

Keywords

Main Subjects

 

Article PDF

[1] J. S. Schwinger, “On gauge invariance and vacuum polarization,” Phys. Rev. 82, 664 (1951). DOI: 10.1103/PhysRev.82.664
[2] R. Sch¨utzhold, H. Gies, and G. Dunne, “Dynamically assisted Schwinger mechanism,” Phys. Rev. Lett. 101, 130404 (2008). DOI: 10.1103/PhysRevLett.101.130404
[3] C. K. Dumlu, “Quantum kinetic approach and the scattering approach to vacuum pair production,” Phys. Rev. D 179, 065027 (2009). DOI: 10.1103/PhysRevD.79.065027
[4] H. Gies and G. Torgrimsson, “Critical Schwinger pair production,” Phys. Rev. Lett. 116, 090406 (2016). DOI: 10.1103/PhysRevLett.116.090406
[5] C. Schneider and R. Sch¨utzhold, “Dynamically assisted Sauter-Schwinger effect in inhomogeneous electric fields,” JHEP 102, 164 (2016). DOI: 10.1007/JHEP02(2016)164
[6] A. Otto, D. Graeveling, and B. K¨ampfer, “Response of the QED(2) vacuum to a quench: Long-term oscillations of the electric field and the pair creation rate,” Plasma Phys. Control. Fusion 61, 074002 (2019). DOI: 10.1088/1361-6587/ab1a21
[7] I. A. Aleksandrov and C. Kohlf¨urst, “Pair production in temporally and spatially oscillating fields,” Phys. Rev. D 101, 096009 (2020). DOI: 10.1103/PhysRevD.101.096009
[8] J. Maldacena, “The Large N limit of superconformal field theories and supergravity”, Int. J. Theor. Phys. 38, 1113 (1999). DOI: 10.1023/A:1026654312961
[9] G. W. Semenoff and K. Zarembo, “Holographic Schwinger effect,” Phys. Rev. Lett. 107, 171601 (2011). DOI:10.1103/PhysRevLett.107.171601
[10] Y. Sato and K. Yoshida, “Potential analysis in holographic Schwinger effect,” JHEP 08, 002 (2013). DOI:10.1007/JHEP08(2013)002
[11] S. Bolognesi, F. Kiefer, and E. Rabinovici, “Comments on critical electric and magnetic fields from holography,” JHEP 01, 174 (2013). DOI: 10.1007/JHEP01(2013)174
[12] K. Hashimoto and T. Oka, “Vacuum instability in electric fields via AdS/CFT: Euler-Heisenberg Lagrangian and Planckian thermalization,” JHEP 10, 116 (2013). DOI:10.1007/JHEP10(2013)116
[13] Y. Sato and K. Yoshida, “Holographic Schwinger effect in confining phase,” JHEP 09, 134 (2013). DOI: 10.1007/JHEP09(2013)134
[14] J. Sadeghi, B. Pourhassan, S. Tahery, and F. Razavi, “Holographic Schwinger effect with a deformed AdS background,” Int. J. Mod. Phys. A 32, 1750045 (2017). DOI:10.1142/S0217751X17500452
[15] L. Shahkarami, M. Dehghani, and P. Dehghani, “Holographic Schwinger effect in a D-instanton background,” Phys. Rev. D 97, 046013 (2018). DOI: 10.1103/PhysRevD.97.046013
[16] L. Shahkarami and F. Charmchi, “Confining D-instanton background in an external electric field,” Eur. Phys. J. C 79, 343 (2019). DOI: 10.1140/epjc/s10052-019-6765-9
[17] Sw. Li, Sk. Luo, and Hq. Li, “Holographic Schwinger effect and electric instability with anisotropy,” JHEP 08, 206 (2022). DOI: 10.1007/JHEP08(2022)206
[18] K. Hashimoto, S. Kinoshita, K. Murata, and T. Oka, “Electric field quench in AdS/CFT,” JHEP 09, 126 (2014). DOI: 10.1007/JHEP09(2014)126
[19] S. Amiri-Sharifi, M. Ali-Akbari, and H. R. Sepangi, “Electric field quench, equilibration and universal behavior,” Phys. Rev. D 91, 126007 (2015). DOI: 10.1103/PhysRevD.91.126007
[20] M. Ali-Akbari, H. Ebrahim, and S. Heshmatian, “Thermal quench at finite t’Hooft coupling,” Nucl. Phys. B904, 527 (2016). DOI: 10.1016/j.nuclphysb.2016.02.003
[21] S. Amiri-Sharifi, M. Ali-Akbari, A. Kishani-Farahani, and N. Shafie, “Double relaxation via AdS/CFT,” Nucl. Phys. B909, 778 (2016). DOI: 10.1016/j.nuclphysb.2016.06.011
[22] M. Ali-Akbari and F. Charmchi, “Holographic equilibration under external dynamical electric field,” Phys. Lett. B 773, 271 (2017). DOI: 10.1016/j.physletb.2017.08.040
[23] L. Shahkarami and F. Charmchi, “Late time oscillations and universal behavior in pulsed electric fields,” [arXiv:2308.02218 [hep-th]]. DOI: 10.48550/arXiv.2308.02218
[24] T. Ishii, S. Kinoshita, K. Murata, and N. Tanahashi, “Dynamical meson melting in holography,” JHEP 04, 099 (2014). DOI: 10.1007/JHEP04(2014)099
[25] M. Ali-Akbari, F. Charmchi, A. Davody, H. Ebrahim, and L. Shahkarami, “Time-dependent meson melting in external magnetic field,” Phys. Rev. D 91, 106008 (2015). DOI: 10.1103/PhysRevD.91.106008
[26] T. Albash, V. G. Filev, C. V. Johnson, and A. Kundu, “Quarks in an external electric field in finite temperature large-N gauge theory,” JHEP 08, 092 (2008). DOI:10.1088/1126-6708/2008/08/092
[27] J. Erdmenger, R. Meyer, and J. P. Shock, “AdS/CFT with flavour in electric and magnetic Kalb-Ramond fields,” JHEP 12, 091 (2007). DOI: 10.1088/1126-6708/2007/12/091
Volume 4, Issue 1
March 2024
Pages 71-82
  • Receive Date: 21 February 2024
  • Revise Date: 15 March 2024
  • Accept Date: 25 March 2024