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1 Introduction

The exploration of quantum vacuum response under strong external fields provides valuable
insights into fundamental physical processes. One prominent phenomenon, known as the
Sauter-Schwinger effect, elucidates the creation of electron-positron pairs from the vacuum
in the presence of a constant homogeneous electric field [1]. This effect, initially studied
in the context of quantum electrodynamics (QED), has broader implications, extending
to gauge theories such as quantum chromodynamics (QCD), where quarks which are also
charged particles introduce additional complexity.

Previous studies have primarily focused on constant electric fields, with limited applica-
bility to real-world experimental conditions. However, recent research has underscored the
importance of considering time- and even spatially-dependent electric fields to bridge the gap
between theoretical predictions and experimental observations (see, e.g.,[2, 3, 4, 5, 6, 7]).
Such investigations moreover reveal critical insights into the non-equilibrium behavior of
gauge theories, shedding light on phenomena inaccessible under equilibrium conditions.

Utilizing holographic techniques, particularly the AdS/CFT correspondence [8], offers
a powerful framework for studying strongly-coupled gauge theories like QCD in regimes
where traditional perturbative methods falter. This is especially important when dealing
with phenomena like the Schwinger effect, which is inherently nonperturbative in nature.
Previous work has primarily focused on exploring the holographic Schwinger effect within
the context of constant electric fields (see, e.g., [9, 10, 11, 12, 13, 14, 15, 16, 17]). Among its
important clarifications about both the Schwinger effect and the nonperturbative properties
of strongly-coupled theories, the AdS/CFT duality has verified the existence of a critical
electric field Ec (dependent on the particle masses), above which particle production from
the vacuum occurs without any obstacle. There are also few works considering the impact
of time-dependent electric fields on the system [12, 18, 19, 20, 21, 22, 23], that provided
valuable insights into the real-time dynamics of gauge theories.

In [23], we employed the N = 2 SU(Nc) supersymmetric gauge theory at zero temper-
ature, focusing on its response to time-dependent electric fields with special configurations
similar to a Gaussian pulse. Due to the assumption of massless quarks, the critical electric
field was zero, resulting in the immediate generation of electric currents even for infinites-
imally small applied electric fields. The study revealed intriguing phenomena, including
the emergence of an oscillatory region resembling underdamped harmonic oscillatory pat-
tern at the late-time behavior of the response electric current. We furthermore found a
unique frequency for these oscillations regardless of the details of the pulse function and its
parameters.

While this work shed light on the behavior of the system under pulse-like electric field
quenches, it left several questions unanswered. The absence of quark masses precluded the
exploration of scenarios where the maximum of the applied electric field falls below the
critical threshold. Consequently, the response of the system to quenches with a maximum
value lower than the critical electric field remained unexplored. Furthermore, the late-
time underdamped oscillatory pattern observed in the electric current dynamics prompts
further investigations into the influence of a mass gap on the problem. Additionally, there
is motivation to explore the frequencies of the oscillations in the presence of massive quarks.

In the present study, we aim to address these outstanding questions by extending our
investigation to include massive quarks in the same background as in [23], exposed to a
time-dependent pulse-like external electric field. The inclusion of massive quarks reflects a
more realistic scenario. By numerically solving the relevant equations derived from the D7
brane DBI action in the gravity side, we explore the dynamical evolution of the developed
electric current in response to the pulse-like electric field. Introducing the quark mass
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renders the quark condensation nontrivial anymore and its nontrivial dynamics should be
obtained alongside that of the electric current. By studying the dynamics of both of these
quantities, we aim to address some of the unresolved questions from the massless case and
provide deeper insights into the non-equilibrium dynamics of supersymmetric SU(Nc) gauge
theories.

The remainder of the paper is structured as follows: In the next section, we provide
a brief introduction to the model and present the evolution equations obtained from the
DBI action. We then describe the main aspects of the numerical technique used to solve
these equations in Section 3. The resulting graphs are presented and analyzed in Section
4. Finally, in Section 5, we summarize our findings and discuss the main conclusions drawn
from this study.

2 N = 2 SU(Nc) supersymmetric theory

We study the system considered in [23] but with a mass gap. Our aim is to explore the far-
from-equilibrium dynamics of this system induced by a homogeneous but time-dependent
electric field, which is turned on at an initial time and decreases again to zero after reaching
a maximum value of Em.

To construct our model, we embed a probe D7 brane into the AdS5 × S5 geometry to
introduce the fundamental quarks on the gauge theory side. According to the AdS/CFT
dictionary, this system corresponds to strongly-coupled N = 2 SU(Nc) supersymmetric
QCD at large Nc and at zero temperature. This toy model exhibits quark confinement only
in the meson sector. Previous studies have shown that in the static case, a minimum value
Ec of the electric field is required to break the confinement, resulting in a nonzero electric
current of charged quarks. The value of the critical electric field Ec increases with the
mass of the quarks (Ec = 0 for massless quarks). Additionally, in static problems, the D7
brane solutions for subcritical and supercritical electric fields are described by Minkowski
and black hole embeddings, respectively.

The metric of the AdS5 × S5 geometry is expressed as follows:

ds2
10 =

R2

z2

(
−dt2 + d~x2 + dz2

)
+R2

(
dφ2 + cos2φdΩ2

3 + sin2φdψ2
)
. (1)

Here, R is the AdS radius and V represents the ingoing Eddington-Finkelstein coordinate,
defined as dV = dt−dz. z denotes the radial bulk coordinate which is zero at the boundary.
The dynamics of the D7 brane is described by the following Dirac-Born-Infeld (DBI) action:

SD7 = −τ7
∫
d8σ
√
−det [P (g)ab + 2πα′Fab], (2)

where P (g)ab and Fab = ∂aAb − ∂bAa are respectively the induced metric and the electro-
magnetic field strength tensor on the brane. Also, τ7 = (2π)−7α′−4g−1

s , where gs denotes
the string coupling and α′ is a string theory parameter so that 1/(2πα′) is the string tension.
Moreover, σa denote the brane worldvolume coordinates. To introduce an electric field along
one of the spatial coordinates of the gauge theory, say x1, we choose the gauge potential to
be in the following form:

2πα′R−2Aadσ
a = a(V, z)dx1. (3)

Notice that in this paper we focus on zero baryon number case. To study the effect of
static fields (where a(V, z) → −EV + a(z) where E is a constant electric field applied in
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x1 direction), one usually employs (V, z,Ω3, ~x3) as the worldvolume coordinates of the D7
brane. Thus, the shape of the D7 brane in the bulk is determined by the functionality of
the other two perpendicular coordinates of the gravity side, i.e., φ and ψ. Since one can set
ψ = 0 utilizing the U(1) symmetry, the brane solutions are determined by φ(z).

The absence of a mass gap corresponds to a flat probe D7 brane configuration in the bulk
geometry where the D7 brane touches the stack of Nc D3-branes. In such a case, similar to
the one considered in [23], φ can simply be chosen to be zero. However, in the present paper,
where the quarks are supposed to be massive, the functionality of φ needs to be determined
along with a by solving the coupled equations of motion.

It is important to note that in our problem, both the gauge field and φ would be functions
of time V and radial coordinate z. To follow the numerical strategy proposed in [18, 24]
for solving such problems, we use (Ω3, ~x3) for six of the worldvolume coordinates of the D7
brane. For the other two coordinates, we introduce a double-null coordinate system (u, v)
instead of the target space coordinates (V, z), which are used in the static case. Therefore,
the dynamical variables are

V = V (u, v), z = Z(u, v), φ = Φ(u, v), ψ = 0, a = a(u, v). (4)

Substituting the induced metric and the above relations into (2), we arrive at

SD7 = −2π2τ7V3

∫
dudv

cos3 Φ

Z3

√
ξ,

ξ =
(
guv + Z2∂ua∂va

)2 − (guu + Z2∂ua
2
) (
gvv + Z2∂va

2
)
, (5)

where V3 is the volume of the spatial coordinates of the field theory, and

guv = −Z−2 (V,uV,v + V,uZ,v + V,vZ,u) + Φ,uΦ,v,

guu = −Z−2V,u (V,u + 2Z,u) + Φ2
,u, gvv = −Z−2V,v (V,v + 2Z,v) + Φ2

,v. (6)

One can leverage the freedom in coordinates (u, v) to simplify the Dirac-Born-Infeld (DBI)
action. To achieve this, we impose the following coordinate conditions as constraint equa-
tions:

guu + Z2 (∂ua)
2

= 0,

gvv + Z2 (∂va)
2

= 0. (7)

Under these double-null conditions, the square root in the DBI action can be eliminated,
simplifying the action to

SD7 = −2π2τ7V3

∫
dudv

cos3 Φ

Z3

(
guv + Z2∂ua∂va

)
. (8)
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Variating this action, one finds the following coupled evolution equations:

V,uv =
3

2
Z(ZΨ),u(ZΨ),v +

3

2
tan(ZΨ)[(ZΨ),uV,v + (ZΨ),vV,u]− 5

2Z
V,uV,v +

Z3

2
a,ua,v,

(9)

Z,uv = −3

2
Z(ZΨ),u(ZΨ),v +

3

2
tan(ZΨ)[(ZΨ),uZ,v + (ZΨ),vZ,u] +

5

Z
Z,uZ,v −

Z3

2
a,ua,v

+
5

2Z
(V,uV,v + V,uZ,v + V,vZ,u), (10)

Ψ,uv =
3

2

(
Ψ +

tan(ZΨ)

Z

)
(ZΨ),u(ZΨ),v +

1− 3ZΨ tan(ZΨ)

2Z2
[(ZΨ),uZ,v + (ZΨ),vZ,u]

− Ψ

2Z2

(
5− 3 tan(ZΨ)

ZΨ

)
(V,uV,v + V,uZ,v + V,vZ,u) +

Z2Ψ

2

(
1− 3 tan(ZΨ)

ZΨ

)
a,ua,v

− 3Ψ

Z2
Z,uZ,v, (11)

a,uv =
3

2
tan(ZΨ)[(ZΨ),ua,v + (ZΨ),va,u] +

1

2Z
(Z,ua,v + Z,va,u) , (12)

where Ψ(u, v) = Φ(u,v)
Z(u,v) is a variable used instead of Φ(u, v).

We will employ the numerical method initially developed in [24] and later utilized in
[18, 25, 22] to solve this set of differential equations. Details of the method can be found in
[24]. Here, we only briefly mention the required initial and boundary conditions.

2.1 Near boundary expansions

Solving Eqs. (9-12), one can determine a and Ψ as functions of V and Z. All the essential
physical quantities can be obtained by expanding these functions near the AdS boundary
Z = 0, yielding:

Ψ(V,Z) =m+

(
c(V ) +

m3

6

)
Z2 + . . . , (13)

a(V,Z) =α0(V ) + α̇0(V )Z +
1

2
J(V )Z2 +

1

2
α̈0(V )Z2 ln(mZ) + . . . . (14)

In the expansion of the scalar field Ψ, m and c(V ) are respectively related to the quark
mass and quark condensate in the gauge theory. Moreover, the leading term in the second
expansion is related to the applied electric field in the field theory and can be expressed as:

α0(V ) = −
∫ V

dV ′E(V ′). (15)

In this paper, we choose the following form for the time-dependent electric field:

E(V ) = Em


0, V < 0,

cos2
(
πV
2δt + π

2

)
, 0 6 V 6 2δt,

0, V > 2δt,

(16)

where Em is the maximum value of the electric field and δt is the ramping time. Furthermore,
J(V ) represents the dynamical electric current in the boundary theory.
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Once the source terms are provided by determining m and E(V ), the quark condensate
c(V ) and electric current J(V ) can be obtained as the response of the gauge theory through
solving the evolution equations in the bulk. We set m = 1 for simplicity in the subsequent
analysis and results. In the next section, we investigate the effect of a typical pulse-like
electric field like (16) using the graphs of c(V ) and J(V ) obtained from the numerical
calculations. Before proceeding, we present the conditions on the variables required for
solving Eqs. (9-12) and provide a brief review of the numerical methods.

2.2 Numerical technique

In our study, we utilize numerical techniques to explore the time evolution of the D7 brane.
We adopt the numerical approach outlined in [24] for determining the probe D7 brane
solutions under dynamic conditions. To facilitate this, we transit to double-null coordinates,
denoted as u and v, replacing the (V, z) coordinates. Subsequently, upon applying the
coordinate conditions (7) to the evolution equations, we obtain a coupled set of differential
equations governing the functions Z(u, v), V (u, v), Ψ(u, v), and a(u, v). The numerical
strategy described in [24] distinguishes between two different schemes based on whether
the brane intersects with the event horizon or not. In our case, we focus on Minkowski
solutions, where the maximum electric field remains sufficiently below the critical electric
field. Consequently, we provide a brief overview of the corresponding numerical scheme
applicable before the brane intersects with the event horizon.

To solve Eqs. (9-12), we employ the finite difference method in the u-v plane. The
imposition of constraints (7) ensures numerical stability. Using coordinate freedom, we fix
the location of the AdS boundary Z = 0 and the pole Φ = π/2 at u = v and u = v + π/2,
respectively.

Applying the asymptotic behavior of the quantities in Eqs.,(13) and (14), we derive
boundary conditions at the AdS boundary, expressed as:

Z|u=v = 0, Ψ|u=v = m, a|u=v = α0(V ), Vv|u=v = 2Zu|u=v. (17)

Here, the condition for V is determined by ensuring the regularity of the evolution equation
near the AdS boundary to satisfy the constraints.

Utilizing the regularities of the evolution equations at the pole, we express the conditions
at the pole as:

(ZΨ)|u=v+π/2 = π/2, V,u = V,v, Z,u = Z,v, a,u = a,v. (18)

Now, let us discuss the initial data. We select v = 0 as the initial surface. The initial
data for V < 0, corresponding to the pre-electric field activation stage, is obtained from the
exact solution of the static embedding in pure AdS, given by:

V (u, 0) = m−1(u− sin(u)) + Vini, Z(u, 0) = m−1 sin(u),

Ψ(u, 0) =
mu

sin(u)
, a(u, 0) = 0, (19)

where Vini is an integration constant.

3 Results

This section presents the graphical outcomes derived from our numerical computations. Our
focus lies on the behavior under subcritical electric fields, where the maximum electric field
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value, Em, remains significantly lower than the critical electric field. Notably, previous ther-
modynamic analyses in [26, 27] identified a first-order phase transition at Ec = 0.57588m2.
This critical threshold has been validated through numerical calculations involving static
electric fields applied to the present system holographically. For simplicity, we set m = 1
throughout our results, maintaining generality.

Consistent with prior studies and affirmed by our calculations, when Em remains notably
below Ec, the D7 brane solution chooses the Minkowski embedding despite the system’s
dynamic nature.
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Figure 1: Time evolution of quark condensate c(V ) and electric current J(V ) for Em = 0.01 and δt = 1, 2, 3.

Figures 1 and 2 illustrate the quark condensate (left graphs) and electric current (right
graphs) plotted against boundary time. In Fig. 1, we fix the maximum electric field value
Em, allowing observation of the impact of varying the ramping time δt on the system’s
dynamic response to the quench. Conversely, in Fig. 2 with fixed δt, we explore the effect of
altering Em by comparing the results.

Both figures reveal that upon turning on the electric field, both the electric current
and quark condensate initiate oscillations, a phenomenon absent in the static case where a
subcritical constant electric field yields a zero electric current. These oscillations, arising
from the problem’s dynamic nature, correspond to bound state oscillations of quarks in the
field theory side. Notably, these oscillations persist over time, as demonstrated in Fig. 3,
showcasing a long-term evolution of the electric current for a typical set of parameters. The
preservation of oscillations over time is due to the fact that we have added the brane in
the probe limit and neglected the bulk back reaction. This leads to conservation of the D7
brane’s energy.

An interesting finding from Fig. 1 is that longer ramping times boost the oscillation
strength. This aligns with other studies using tanh-like electric field profiles, where the
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Figure 2: Time evolution of quark condensate c(V ) and electric current J(V ) for δt = 2 and Em =
0.005, 0.01.
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Figure 3: Long-term evolution of the electric current as a response to an electric pulse with parameters
Em = 0.005 and δt = 2.

field gradually increases to a final finite value. However, our previous work ([23]) noted
a different trend with pulse-like electric fields, where increasing ramping times decreases
the amplitude of the oscillations for short enough ramping times. Exploring the effect
of various ramping times in our current study, containing massive quarks, could provide
valuable insights. Additionally, Fig. 2 indicates that oscillation amplitudes rise with Em,
as expected. Another intriguing observation is that oscillation patterns for both c and J
synchronize when δt remains constant, i.e., the time courses are the same for various values
of Em, similar to what we observed in the massless case.

Lastly, analyzing the power spectrum helps identify key oscillation modes. Fig. 4 dis-
plays the frequency content of J(V ) for different Em values. Remarkably, regardless of the
quenched electric field parameters, the first peak consistently occurs around ω ≈ 2.8. This
frequency, showing the dominant oscillation mode of the D7 brane, is in fact a nonlinear
counterpart of a normal mode seen in linear perturbations, remaining unchanged by altering
the quench parameters within our numerical precision. This mode signifies the excitation of
mesons within the field theory side. It is important to note that despite the presence of the
electric field, these mesons remain stable, indicating that the field is not strong enough to
melt them.
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Figure 4: The power spectrum of J(V ) for two electric pulses with parameters δt = 2 and Em = 0.005, 0.01.

4 Conclusion

In this study, we have investigated the far-from-equilibrium dynamics of a system similar
to supersymmetric SU(Nc) gauge theories with massive quarks under the influence of time-
dependent electric fields, employing holographic techniques within the framework of the
AdS/CFT correspondence. Our investigation has aimed to provide insights into the behav-
ior of strongly-coupled gauge theories, particularly in scenarios involving nonperturbative
phenomena like the Schwinger effect.

Building upon our previous work [23], we have extended our analysis to include massive
quarks, reflecting a more realistic representation of the system. This distinction is critical, as
the presence of a mass gap introduces complexities in calculations which are not present in
the massless case. Unlike previous calculation where the D7 brane’s shape was fixed due to
its intersection with the Poincare horizon, in the present scenario, the dynamics necessitate
complicated numerical techniques. Specifically, we have utilized double-null coordinates and
the finite difference method introduced in [24] to tackle the resulting differential equations.

Through numerical calculations derived from the D7 brane DBI action, we have explored
the dynamic evolution of the system’s electric current in response to pulse-like electric fields.
We have focused on subcritical electric fields in this work. Our findings revealed intriguing
phenomena, including the emergence of oscillatory patterns in both the electric current and
quark condensate upon turning on the electric field. These oscillations persisted over time,
reflecting the conservation of energy in the D7 brane, since here we are neglecting the bulk
back reaction and the solution for the brane is the Minkowski embedding.

Furthermore, our study highlighted the influence of varying pulse parameters, i.e., the
ramping time and maximum electric field value on the system’s dynamics. Notably, we
observed enhanced oscillation amplitudes with increasing ramping time and synchronized
oscillation time courses for fixed ramping time values and different values of the maximum
electric field.

Additionally, power spectrum analysis of the electric current shows that the dominant
frequency is unique irrespective of the parameters of the quenched electric field pulse, and
regarding the persistence of the oscillations over time without damping, this frequency is a
nonlinear counterpart of a normal mode in linear perturbations.

In summary, our investigation offers deeper insights into the non-equilibrium dynamics
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of supersymmetric SU(Nc) gauge theories, underscoring the importance of considering mass
gaps and dynamic electric field scenarios. As future directions, it would be interesting to
extend the present calculations to explore supercritical and near-critical electric fields. This
would enable the study of thermalization and deconfinement processes under pulsed electric
fields.
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