[1] D. Kubiznak, R. B. Mann, and M. Teo, “Black hole chemistry: thermodynamics with Lambda”, Class. Quant. Grav. 34 6 063001 (2017). DOI: 10.1088/1361-6382/aa5c69
[2] D. Kastor, S. Ray, and J. Traschen, “Enthalpy and the Mechanics of AdS Black Holes”, Class. Quant. Grav. 26, 195011 (2009). DOI: 10.1088/0264-9381/26/19/195011
[3] B. P. Dolan, “Pressure and volume in the first law of black hole thermodynamics”, Class. Quant. Grav. 28, 235017 (2011). DOI: 10.1088/0264-9381/28/23/235017
[4] B. P. Dolan, “The cosmological constant and the black hole equation of state”, Class. Quant. Grav. 28, 125020 (2011). DOI: 10.1088/0264-9381/28/12/125020
[5] M. Cvetic, G. W. Gibbons, D. Kubiznak, and C. N. Pope, “Black Hole Enthalpy and an Entropy Inequality for the Thermodynamic Volume”, Phys. Rev. D 84, 024037 (2011). DOI: 10.1103/PhysRevD.84.024037
[6] D. Kubiznak and R. B. Mann, “Black hole chemistry”, Can. J. Phys. 93, 9 999–1002 (2015). DOI: 10.1139/cjp-2014-0465
[7] C. Teitelboim, “The cosmological constant as a thermodynamic black hole parameter”, Phys. Lett. B 158, 293–297 (1985). DOI: 10.1016/0370-2693(85)91186-4
[8] J. D. E. Creighton and R. B. Mann, “Quasilocal thermodynamics of dilaton gravity coupled to gauge fields”, Phys. Rev. D 52, 4569–4587 (1995). DOI: 10.1103/Phys-RevD.52.4569
[9] M. M. Caldarelli, G. Cognola, and D. Klemm, “Thermodynamics of Kerr-Newman-AdS black holes and conformal field theories”, Class. Quant. Grav. 17, 399–420 (2000). DOI: 10.1088/0264-9381/17/2/310
[10] D. Kubiznak and R. B. Mann, “P-V criticality of charged AdS black holes”, JHEP 07, 033 (2012). DOI: 10.1007/JHEP07(2012)033
[11] N. Altamirano, D. Kubiznak, and R. B. Mann, “Reentrant phase transitions in rotating anti–de Sitter black holes”, Phys. Rev. D 88, 10 101502 (2013). DOI: 10.1103/Phys-RevD.88.101502
[12] A. M. Frassino, D. Kubiznak, R. B. Mann, and F. Simovic, “Multiple Reentrant Phase Transitions and Triple Points in Lovelock Thermodynamics”, JHEP 09, 080 (2014). DOI: 10.1007/JHEP09(2014)080
[13] N. Altamirano, D. Kubiznak, R. B. Mann, and Z. Sherkatghanad, “Kerr-AdS analogue of triple point and solid/liquid/gas phase transition”, Class. Quant. Grav. 31, 042001 (2014). DOI: 10.1088/0264-9381/31/4/042001
[14] S.-W. Wei and Y.-X. Liu, “Triple points and phase diagrams in the extended phase space of charged Gauss-Bonnet black holes in AdS space”, Phys. Rev. D 90, 4 044057 (2014). DOI: 10.1103/PhysRevD.90.044057
[15] A. Dehghani, S. H. Hendi, and R. B. Mann, “Range of novel black hole phase transitions via massive gravity: Triple points and N-fold reentrant phase transitions”, Phys. Rev. D 101, 8 084026 (2020). DOI: 10.1103/PhysRevD.101.084026
[16] C. V. Johnson, “Holographic Heat Engines”, Class. Quant. Grav. 31, 205002 (2014). DOI: 10.1088/0264-9381/31/20/205002
[17] B. P. Dolan, A. Kostouki, D. Kubiznak, and R. B. Mann, “Isolated critical point from Lovelock gravity”, Class. Quant. Grav. 31, 24 242001 (2014). DOI: 10.1088/0264-9381/31/24/242001
[18] R. A. Hennigar, R. B. Mann, and E. Tjoa, “Superfluid Black Holes”, Phys. Rev. Lett. 118, 2 021301 (2017). DOI: 10.1103/PhysRevLett.118.021301
[19] Ökcü and E. Aydiner, “Joule–Thomson expansion of the charged AdS black holes”, Eur. Phys. J. C 77, 1 24 (2017). DOI: 10.1140/epjc/s10052-017-4598-y [20] S.-W. Wei and Y.-X. Liu, “Insight into the Microscopic Structure of an AdS Black Hole from a Thermodynamical Phase Transition”, Phys. Rev. Lett. 115, 11 111302 (2015). [Erratum: Phys.Rev.Lett. 116, 169903 (2016)]. DOI: 10.1103/PhysRevLett.115.111302
[21] M. Tavakoli, J. Wu, and R. B. Mann, “Multi-critical points in black hole phase transitions”, JHEP 12, 117 (2022). DOI: 10.1007/JHEP12(2022)117
[22] J. Wu and R. B. Mann, “Multicritical Phase Transitions in Multiply Rotating Black Holes”, Class. Quant. Grav. 40, 6, 06LT01 (2023). DOI: 10.1088/1361-6382/acbc04
[23] J. Wu and R. B. Mann, “Thermodynamically stable phases of asymptotically flat Lovelock black holes”, Class. Quant. Grav. 40, 14 145009 (2023). DOI: 10.1088/1361-6382/acdd41
[24] M. Astorino, “Thermodynamics of Regular Accelerating Black Holes”, Phys. Rev. D 95, 6 064007 (2017). DOI: 10.1103/PhysRevD.95.064007
[25] A. Anabalón, M. Appels, R. Gregory, D. Kubizn̆ák, R. B. Mann, and A. Ovgün, “Holographic Thermodynamics of Accelerating Black Holes”, Phys. Rev. D 98, 10 104038 (2018). DOI: 10.1103/PhysRevD.98.104038
[26] A. Anabalón, F. Gray, R. Gregory, D. Kubizn̆ák, and R. B. Mann, “Thermodynamics of Charged, Rotating, and Accelerating Black Holes”, JHEP 04, 096 (2019). DOI: 10.1007/JHEP04(2019)096
[27] B. P. Dolan, D. Kastor, D. Kubiznak, R. B. Mann, and J. Traschen, “Thermodynamic Volumes and Isoperimetric Inequalities for de Sitter Black Holes”, Phys. Rev. D 87, 10 104017 (2013). DOI: 10.1103/PhysRevD.87.104017
[28] S. Mbarek and R. B. Mann, “Reverse Hawking-Page Phase Transition in de Sitter Black Holes”, JHEP 02, 103 (2019). DOI: 10.1007/JHEP02(2019)103
[29] F. Simovic and R. B. Mann, “Critical Phenomena of Charged de Sitter Black Holes in Cavities”, Class. Quant. Grav. 36, 1 014002 (2019). DOI: 10.1088/1361-6382/aaf445
[30] S. Mbarek and R. B. Mann, “Thermodynamic Volume of Cosmological Solitons”, Phys. Lett. B 765, 352–358 (2017). DOI: 10.1016/j.physletb.2016.12.042
[31] C. Quijada, A. Anabal´on, R. B. Mann, and J. Oliva, “Triple Points of Gravitational AdS Solitons and Black Holes”, arXiv:2308.16341. DOI: 10.48550/arXiv.2308.16341
[32] G. W. Gibbons, M. J. Perry, and C. N. Pope, “The First law of thermodynamics for Kerr-anti-de Sitter black holes”, Class. Quant. Grav. 22, 1503–1526 (2005). DOI:10.1088/0264-9381/22/9/002
[33] B. P. Dolan, “Bose condensation and branes”, JHEP 10, 179 (2014). DOI:10.1007/JHEP10(2014)179
[34] D. Kastor, S. Ray, and J. Traschen, “Chemical Potential in the First Law for Holographic Entanglement Entropy”, JHEP 11, 120 (2014). DOI:10.1007/JHEP11(2014)120
[35] J.-L. Zhang, R.-G. Cai, and H. Yu, “Phase transition and thermodynamical geometry for Schwarzschild AdS black hole in AdS5 × S spacetime”, JHEP 02, 143 (2015). DOI:10.1007/JHEP02(2015)143
[36] J.-L. Zhang, R.-G. Cai, and H. Yu, “Phase transition and thermodynamical geometry of Reissner-Nordström-AdS black holes in extended phase space”, Phys. Rev. D 91, no. 4 044028 (2015). DOI: 10.1103/PhysRevD.91.044028
[37] B. P. Dolan, “Pressure and compressibility of conformal field theories from the AdS/CFT correspondence”, Entropy 18, 169 (2016). DOI: 10.3390/e18050169
[38] F. McCarthy, D. Kubizňák, and R. B. Mann, “Breakdown of the equal area law for holographic entanglement entropy”, JHEP 11, 165 (2017). DOI: 10.1007/JHEP11(2017)165
[39] J. M. Maldacena, “The Large N limit of superconformal field theories and supergravity”, Adv. Theor. Math. Phys. 2, 231–252 (1998). DOI; 10.1023/A:1026654312961
[40] E. Witten, “Anti-de Sitter space and holography”, Adv. Theor. Math. Phys. 2, 253–291 (1998). DOI: 10.4310/ATMP.1998.v2.n2.a2
[41] E. Witten, “Anti-de Sitter space, thermal phase transition”, and confinement in gauge theories, Adv. Theor. Math. Phys. 2, 505–532 (1998). DOI:10.4310/ATMP.1998.v2.n3.a3
[42] S. W. Hawking and D. N. Page, “Thermodynamics of Black Holes in anti-De Sitter Space”, Commun. Math. Phys. 87, 577 (1983). DOI: 10.1007/BF01208266
[43] E. Caceres, P. H. Nguyen, and J. F. Pedraza, “Holographic entanglement entropy and the extended phase structure of STU black holes”, JHEP 09, 184 (2015). DOI:10.1007/JHEP09(2015)184
[44] A. Karch and B. Robinson, “Holographic Black Hole Chemistry”, JHEP 12, 073 (2015). DOI: 10.1007/JHEP12(2015)073
[45] M. Sinamuli and R. B. Mann, “Higher Order Corrections to Holographic Black Hole Chemistry”, Phys. Rev. D 96, no. 8 086008 (2017). DOI: 10.1103/PhysRevD.96.086008
[46] M. R. Visser, “Holographic thermodynamics requires a chemical potential for color”, Phys. Rev. D 105, no. 10 106014 (2022). DOI: 10.1103/PhysRevD.105.106014
[47] D. Kastor, S. Ray, and J. Traschen, “Smarr Formula and an Extended First Law for Lovelock Gravity”, Class. Quant. Grav. 27, 235014 (2010). DOI: 10.1088/0264-9381/27/23/235014
[48] W. Cong, D. Kubiznak, and R. B. Mann, “Thermodynamics of AdS Black Holes: Critical Behavior of the Central Charge”, Phys. Rev. Lett. 127, no. 9 091301 (2021). DOI:10.1103/PhysRevLett.127.091301
[49] M. B. Ahmed, W. Cong, D. Kubizňák, R. B. Mann, and M. R. Visser, “Holographic Dual of Extended Black Hole Thermodynamics”, Phys. Rev. Lett. 130, no. 18 181401 (2023). DOI: 10.1103/PhysRevLett.130.181401
[50] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, “Gauge theory correlators from noncritical string theory”, Phys. Lett. B 428, 105–114 (1998). DOI: 10.1016/S0370-2693(98)00377-3
[51] G. Zeyuan and L. Zhao, “Restricted phase space thermodynamics for AdS black holes via holography”, Class. Quant. Grav. 39, 7, 075019 (2022). DOI: 10.1088/1361-6382/ac566c
[52] W. Cong, D. Kubiznak, R. B. Mann, and M. R. Visser, “Holographic CFT phase transitions and criticality for charged AdS black holes”, JHEP 08, 174 (2022). DOI:10.1007/JHEP08(2022)174
[53] A. Chamblin, R. Emparan, C. V. Johnson, and R. C. Myers, “Charged AdS black holes and catastrophic holography”, Phys. Rev. D 60, 064018 (1999). DOI: 10.1103/Phys-RevD.60.064018
[54] I. Savonije and E. P. Verlinde, “CFT and entropy on the brane”, Phys. Lett. B 507, 305–311 (2001). DOI: 10.1016/S0370-2693(01)00467-1
[55] M. B. Ahmed, W. Cong, D. Kubiznak, R. B. Mann, and M. R. Visser, “Holographic CFT phase transitions and criticality for rotating AdS black holes”, JHEP 08, 142 (2023). DOI: 10.1007/JHEP08(2023)142
[56] T.-F. Gong, J. Jiang, and M. Zhang, “Holographic thermodynamics of rotating black holes”, JHEP 06, 105 (2023). DOI: 10.1007/JHEP06(2023)105
[57] M. Zhang and J. Jiang, “Bulk-boundary thermodynamic equivalence: a topology view point”, JHEP 06, 115 (2023). DOI: 10.1007/JHEP06(2023)115
[58] G. Arenas-Henriquez, A. Cisterna, F. Diaz, and R. Gregory, “Accelerating black holes in 2 + 1 dimensions: holography revisited”, JHEP 09, 122 (2023). DOI:10.1007/JHEP09(2023)122
[59] A. Al Balushi, R. A. Hennigar, H. K. Kunduri, and R. B. Mann, “Holographic Complexity and Thermodynamic Volume”, Phys. Rev. Lett. 126, no. 10 101601 (2021). DOI: 10.1103/PhysRevLett.126.101601
[60] A. Al Balushi, R. A. Hennigar, H. K. Kunduri, and R. B. Mann, “Holographic complexity of rotating black holes”, JHEP 05, 226 (2021). DOI: 10.1007/JHEP05(2021)226
[61] A. Bernamonti, F. Bigazzi, D. Billo, L. Faggi, and F. Galli, “Holographic and QFT complexity with angular momentum”, JHEP 11, 037 (2021). DOI:10.1007/JHEP11(2021)037
[62] M. Zhang, C. Fang, and J. Jiang, “Holographic complexity of rotating black holes with conical deficits”, Phys. Lett. B 838, 137691 (2023). DOI:10.1016/j.physletb.2023.137691