Recent Developments in Holographic Black Hole Chemistry

Document Type : Review article


1 University of Waterloo, Waterloo, Ontario, Canada

2 Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada


One of the major developments in classical black hole thermodynamics is the inclusion of vacuum energy in the form of thermodynamic pressure. Known as Black Hole Chemistry, this subdiscipline has led to the realization that anti de Sitter black holes exhibit a broad variety of phase transitions that are essentially the same as those observed in chemical systems. Since the pressure is given in terms of a negative cosmological constant (which parametrizes the vacuum energy), the holographic interpretation of Black Hole Chemistry has remained unclear. In the last few years there has been considerable progress in developing an exact dictionary between the bulk laws of Black Hole Chemistry and the laws of the dual Conformal Field Theory (CFT). Holographic Black Hole Chemistry is now becoming an established subfield, with a full thermodynamic bulk/boundary correspondence, and an emergent understanding of CFT phase behaviour and its correspondence in the bulk. Here I review these developments, highlighting key advances and briefly discussing future prospects for further research.


Main Subjects


Article PDF

[1] D. Kubiznak, R. B. Mann, and M. Teo, “Black hole chemistry: thermodynamics with Lambda”, Class. Quant. Grav. 34 6 063001 (2017). DOI: 10.1088/1361-6382/aa5c69
[2] D. Kastor, S. Ray, and J. Traschen, “Enthalpy and the Mechanics of AdS Black Holes”, Class. Quant. Grav. 26, 195011 (2009). DOI: 10.1088/0264-9381/26/19/195011
[3] B. P. Dolan, “Pressure and volume in the first law of black hole thermodynamics”, Class. Quant. Grav. 28, 235017 (2011). DOI: 10.1088/0264-9381/28/23/235017
[4] B. P. Dolan, “The cosmological constant and the black hole equation of state”, Class. Quant. Grav. 28, 125020 (2011). DOI: 10.1088/0264-9381/28/12/125020
[5] M. Cvetic, G. W. Gibbons, D. Kubiznak, and C. N. Pope, “Black Hole Enthalpy and an Entropy Inequality for the Thermodynamic Volume”, Phys. Rev. D 84, 024037 (2011). DOI: 10.1103/PhysRevD.84.024037
[6] D. Kubiznak and R. B. Mann, “Black hole chemistry”, Can. J. Phys. 93, 9 999–1002 (2015). DOI: 10.1139/cjp-2014-0465
[7] C. Teitelboim, “The cosmological constant as a thermodynamic black hole parameter”, Phys. Lett. B 158, 293–297 (1985). DOI: 10.1016/0370-2693(85)91186-4
[8] J. D. E. Creighton and R. B. Mann, “Quasilocal thermodynamics of dilaton gravity coupled to gauge fields”, Phys. Rev. D 52, 4569–4587 (1995). DOI: 10.1103/Phys-RevD.52.4569
[9] M. M. Caldarelli, G. Cognola, and D. Klemm, “Thermodynamics of Kerr-Newman-AdS black holes and conformal field theories”, Class. Quant. Grav. 17, 399–420 (2000). DOI: 10.1088/0264-9381/17/2/310
[10] D. Kubiznak and R. B. Mann, “P-V criticality of charged AdS black holes”, JHEP 07, 033 (2012). DOI: 10.1007/JHEP07(2012)033
[11] N. Altamirano, D. Kubiznak, and R. B. Mann, “Reentrant phase transitions in rotating anti–de Sitter black holes”, Phys. Rev. D 88, 10 101502 (2013). DOI: 10.1103/Phys-RevD.88.101502
[12] A. M. Frassino, D. Kubiznak, R. B. Mann, and F. Simovic, “Multiple Reentrant Phase Transitions and Triple Points in Lovelock Thermodynamics”, JHEP 09, 080 (2014). DOI: 10.1007/JHEP09(2014)080
[13] N. Altamirano, D. Kubiznak, R. B. Mann, and Z. Sherkatghanad, “Kerr-AdS analogue of triple point and solid/liquid/gas phase transition”, Class. Quant. Grav. 31, 042001 (2014). DOI: 10.1088/0264-9381/31/4/042001
[14] S.-W. Wei and Y.-X. Liu, “Triple points and phase diagrams in the extended phase space of charged Gauss-Bonnet black holes in AdS space”, Phys. Rev. D 90, 4 044057 (2014). DOI: 10.1103/PhysRevD.90.044057
[15] A. Dehghani, S. H. Hendi, and R. B. Mann, “Range of novel black hole phase transitions via massive gravity: Triple points and N-fold reentrant phase transitions”, Phys. Rev. D 101, 8 084026 (2020). DOI: 10.1103/PhysRevD.101.084026
[16] C. V. Johnson, “Holographic Heat Engines”, Class. Quant. Grav. 31, 205002 (2014). DOI: 10.1088/0264-9381/31/20/205002
[17] B. P. Dolan, A. Kostouki, D. Kubiznak, and R. B. Mann, “Isolated critical point from Lovelock gravity”, Class. Quant. Grav. 31, 24 242001 (2014). DOI: 10.1088/0264-9381/31/24/242001
[18] R. A. Hennigar, R. B. Mann, and E. Tjoa, “Superfluid Black Holes”, Phys. Rev. Lett. 118, 2 021301 (2017). DOI: 10.1103/PhysRevLett.118.021301
[19] Ökcü and E. Aydiner, “Joule–Thomson expansion of the charged AdS black holes”, Eur. Phys. J. C 77, 1 24 (2017). DOI: 10.1140/epjc/s10052-017-4598-y [20] S.-W. Wei and Y.-X. Liu, “Insight into the Microscopic Structure of an AdS Black Hole from a Thermodynamical Phase Transition”, Phys. Rev. Lett. 115, 11 111302 (2015). [Erratum: Phys.Rev.Lett. 116, 169903 (2016)]. DOI: 10.1103/PhysRevLett.115.111302
[21] M. Tavakoli, J. Wu, and R. B. Mann, “Multi-critical points in black hole phase transitions”, JHEP 12, 117 (2022). DOI: 10.1007/JHEP12(2022)117
[22] J. Wu and R. B. Mann, “Multicritical Phase Transitions in Multiply Rotating Black Holes”, Class. Quant. Grav. 40, 6, 06LT01 (2023). DOI: 10.1088/1361-6382/acbc04
[23] J. Wu and R. B. Mann, “Thermodynamically stable phases of asymptotically flat Lovelock black holes”, Class. Quant. Grav. 40, 14 145009 (2023). DOI: 10.1088/1361-6382/acdd41
[24] M. Astorino, “Thermodynamics of Regular Accelerating Black Holes”, Phys. Rev. D 95, 6 064007 (2017). DOI: 10.1103/PhysRevD.95.064007
[25] A. Anabalón, M. Appels, R. Gregory, D. Kubizn̆ák, R. B. Mann, and A. Ovgün, “Holographic Thermodynamics of Accelerating Black Holes”, Phys. Rev. D 98, 10 104038 (2018). DOI: 10.1103/PhysRevD.98.104038
[26] A. Anabalón, F. Gray, R. Gregory, D. Kubizn̆ák, and R. B. Mann, “Thermodynamics of Charged, Rotating, and Accelerating Black Holes”, JHEP 04, 096 (2019). DOI: 10.1007/JHEP04(2019)096
[27] B. P. Dolan, D. Kastor, D. Kubiznak, R. B. Mann, and J. Traschen, “Thermodynamic Volumes and Isoperimetric Inequalities for de Sitter Black Holes”, Phys. Rev. D 87, 10 104017 (2013). DOI: 10.1103/PhysRevD.87.104017
[28] S. Mbarek and R. B. Mann, “Reverse Hawking-Page Phase Transition in de Sitter Black Holes”, JHEP 02, 103 (2019). DOI: 10.1007/JHEP02(2019)103
[29] F. Simovic and R. B. Mann, “Critical Phenomena of Charged de Sitter Black Holes in Cavities”, Class. Quant. Grav. 36, 1 014002 (2019). DOI: 10.1088/1361-6382/aaf445
[30] S. Mbarek and R. B. Mann, “Thermodynamic Volume of Cosmological Solitons”, Phys. Lett. B 765, 352–358 (2017). DOI: 10.1016/j.physletb.2016.12.042
[31] C. Quijada, A. Anabal´on, R. B. Mann, and J. Oliva, “Triple Points of Gravitational AdS Solitons and Black Holes”, arXiv:2308.16341. DOI: 10.48550/arXiv.2308.16341
[32] G. W. Gibbons, M. J. Perry, and C. N. Pope, “The First law of thermodynamics for Kerr-anti-de Sitter black holes”, Class. Quant. Grav. 22, 1503–1526 (2005). DOI:10.1088/0264-9381/22/9/002
[33] B. P. Dolan, “Bose condensation and branes”, JHEP 10, 179 (2014). DOI:10.1007/JHEP10(2014)179
[34] D. Kastor, S. Ray, and J. Traschen, “Chemical Potential in the First Law for Holographic Entanglement Entropy”, JHEP 11, 120 (2014). DOI:10.1007/JHEP11(2014)120
[35] J.-L. Zhang, R.-G. Cai, and H. Yu, “Phase transition and thermodynamical geometry for Schwarzschild AdS black hole in AdS5 × S spacetime”, JHEP 02, 143 (2015). DOI:10.1007/JHEP02(2015)143
[36] J.-L. Zhang, R.-G. Cai, and H. Yu, “Phase transition and thermodynamical geometry of Reissner-Nordström-AdS black holes in extended phase space”, Phys. Rev. D 91, no. 4 044028 (2015). DOI: 10.1103/PhysRevD.91.044028
[37] B. P. Dolan, “Pressure and compressibility of conformal field theories from the AdS/CFT correspondence”, Entropy 18, 169 (2016). DOI: 10.3390/e18050169
[38] F. McCarthy, D. Kubizňák, and R. B. Mann, “Breakdown of the equal area law for holographic entanglement entropy”, JHEP 11, 165 (2017). DOI: 10.1007/JHEP11(2017)165
[39] J. M. Maldacena, “The Large N limit of superconformal field theories and supergravity”, Adv. Theor. Math. Phys. 2, 231–252 (1998). DOI; 10.1023/A:1026654312961
[40] E. Witten, “Anti-de Sitter space and holography”, Adv. Theor. Math. Phys. 2, 253–291 (1998). DOI: 10.4310/ATMP.1998.v2.n2.a2
[41] E. Witten, “Anti-de Sitter space, thermal phase transition”, and confinement in gauge theories, Adv. Theor. Math. Phys. 2, 505–532 (1998). DOI:10.4310/ATMP.1998.v2.n3.a3
[42] S. W. Hawking and D. N. Page, “Thermodynamics of Black Holes in anti-De Sitter Space”, Commun. Math. Phys. 87, 577 (1983). DOI: 10.1007/BF01208266
[43] E. Caceres, P. H. Nguyen, and J. F. Pedraza, “Holographic entanglement entropy and the extended phase structure of STU black holes”, JHEP 09, 184 (2015). DOI:10.1007/JHEP09(2015)184
[44] A. Karch and B. Robinson, “Holographic Black Hole Chemistry”, JHEP 12, 073 (2015). DOI: 10.1007/JHEP12(2015)073
[45] M. Sinamuli and R. B. Mann, “Higher Order Corrections to Holographic Black Hole Chemistry”, Phys. Rev. D 96, no. 8 086008 (2017). DOI: 10.1103/PhysRevD.96.086008
[46] M. R. Visser, “Holographic thermodynamics requires a chemical potential for color”, Phys. Rev. D 105, no. 10 106014 (2022). DOI: 10.1103/PhysRevD.105.106014
[47] D. Kastor, S. Ray, and J. Traschen, “Smarr Formula and an Extended First Law for Lovelock Gravity”, Class. Quant. Grav. 27, 235014 (2010). DOI: 10.1088/0264-9381/27/23/235014
[48] W. Cong, D. Kubiznak, and R. B. Mann, “Thermodynamics of AdS Black Holes: Critical Behavior of the Central Charge”, Phys. Rev. Lett. 127, no. 9 091301 (2021). DOI:10.1103/PhysRevLett.127.091301
[49] M. B. Ahmed, W. Cong, D. Kubizňák, R. B. Mann, and M. R. Visser, “Holographic Dual of Extended Black Hole Thermodynamics”, Phys. Rev. Lett. 130, no. 18 181401 (2023). DOI: 10.1103/PhysRevLett.130.181401
[50] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, “Gauge theory correlators from noncritical string theory”, Phys. Lett. B 428, 105–114 (1998). DOI: 10.1016/S0370-2693(98)00377-3
[51] G. Zeyuan and L. Zhao, “Restricted phase space thermodynamics for AdS black holes via holography”, Class. Quant. Grav. 39, 7, 075019 (2022). DOI: 10.1088/1361-6382/ac566c
[52] W. Cong, D. Kubiznak, R. B. Mann, and M. R. Visser, “Holographic CFT phase transitions and criticality for charged AdS black holes”, JHEP 08, 174 (2022). DOI:10.1007/JHEP08(2022)174
[53] A. Chamblin, R. Emparan, C. V. Johnson, and R. C. Myers, “Charged AdS black holes and catastrophic holography”, Phys. Rev. D 60, 064018 (1999). DOI: 10.1103/Phys-RevD.60.064018
[54] I. Savonije and E. P. Verlinde, “CFT and entropy on the brane”, Phys. Lett. B 507, 305–311 (2001). DOI: 10.1016/S0370-2693(01)00467-1
[55] M. B. Ahmed, W. Cong, D. Kubiznak, R. B. Mann, and M. R. Visser, “Holographic CFT phase transitions and criticality for rotating AdS black holes”, JHEP 08, 142 (2023). DOI: 10.1007/JHEP08(2023)142
[56] T.-F. Gong, J. Jiang, and M. Zhang, “Holographic thermodynamics of rotating black holes”, JHEP 06, 105 (2023). DOI: 10.1007/JHEP06(2023)105
[57] M. Zhang and J. Jiang, “Bulk-boundary thermodynamic equivalence: a topology view point”, JHEP 06, 115 (2023). DOI: 10.1007/JHEP06(2023)115
[58] G. Arenas-Henriquez, A. Cisterna, F. Diaz, and R. Gregory, “Accelerating black holes in 2 + 1 dimensions: holography revisited”, JHEP 09, 122 (2023). DOI:10.1007/JHEP09(2023)122
[59] A. Al Balushi, R. A. Hennigar, H. K. Kunduri, and R. B. Mann, “Holographic Complexity and Thermodynamic Volume”, Phys. Rev. Lett. 126, no. 10 101601 (2021). DOI: 10.1103/PhysRevLett.126.101601
[60] A. Al Balushi, R. A. Hennigar, H. K. Kunduri, and R. B. Mann, “Holographic complexity of rotating black holes”, JHEP 05, 226 (2021). DOI: 10.1007/JHEP05(2021)226
[61] A. Bernamonti, F. Bigazzi, D. Billo, L. Faggi, and F. Galli, “Holographic and QFT complexity with angular momentum”, JHEP 11, 037 (2021). DOI:10.1007/JHEP11(2021)037
[62] M. Zhang, C. Fang, and J. Jiang, “Holographic complexity of rotating black holes with conical deficits”, Phys. Lett. B 838, 137691 (2023). DOI:10.1016/j.physletb.2023.137691
Volume 4, Issue 1
March 2024
Pages 1-26
  • Receive Date: 18 November 2023
  • Revise Date: 13 December 2023
  • Accept Date: 20 December 2023