[1] G. Bonelli, F. Globlek, N. Kubo, T. Nosaka, and A. Tanzini, “M2-branes and q-Painlevé equations”, Lett. Math. Phys. 112 no. 6, 109 (2022). DOI: 10.1007/s11005-022-01597-0
[2] S. Moriyama and T. Nosaka, “40 bilinear relations of q-Painlevé VI from N = 4 super Chern-Simons theory”, JHEP 08, 191 (2023). DOI: 10.1007/JHEP08(2023)191
[3] Y. Imamura and K. Kimura, “On the moduli space of elliptic Maxwell-Chern-Simons theories”, Prog. Theor. Phys. 120, 509–523 (2008). DOI: 10.1143/PTP.120.509
[4] Y. Imamura and K. Kimura, “N=4 Chern-Simons theories with auxiliary vector multiplets”, JHEP 10, 040 (2008). DOI: 10.1088/1126-6708/2008/10/040
[5] K. Hosomichi, K.-M. Lee, S. Lee, S. Lee, and J. Park, “N=5,6 Superconformal Chern-Simons Theories and M2-branes on Orbifolds”, JHEP 09, 002 (2008). DOI: 10.1088/1126-6708/2008/09/002
[6] K. Hosomichi, K.-M. Lee, S. Lee, S. Lee, and J. Park, “N=4 Superconformal ChernSimons Theories with Hyper and Twisted Hyper Multiplets”, JHEP 07, 091 (2008).
[7] O. Aharony, O. Bergman, D. L. Jafferis, and J. Maldacena, “N=6 superconformal ChernSimons-matter theories, M2-branes and their gravity duals”, JHEP 0810, 091 (2008).
[8] O. Aharony, O. Bergman, and D. L. Jafferis, “Fractional M2-branes”, JHEP 11, 043 (2008).
[9] V. Pestun, “Localization of the four-dimensional N=4 SYM to a two-sphere and 1/8 BPS Wilson loops”, JHEP 12, 067 (2012). DOI: 10.1007/JHEP12(2012)067
[10] A. Kapustin, B. Willett, and I. Yaakov, “Nonperturbative Tests of Three-Dimensional Dualities”, JHEP 10, 013 (2010). DOI: 10.1007/JHEP10(2010)013
[11] C. P. Herzog, I. R. Klebanov, S. S. Pufu, and T. Tesileanu, “Multi-Matrix Models and Tri-Sasaki Einstein Spaces”, Phys. Rev. D 83, 046001 (2011). DOI: 10.1103/PhysRevD.83.046001
[12] I. R. Klebanov and A. A. Tseytlin, “Near extremal black hole entropy and ?uctuating three-branes”, Nucl. Phys. B 479, 319–335 (1996). DOI: 10.1016/0550-3213(96)00459-2
[13] M. Marino and P. Putrov, “ABJM theory as a Fermi gas”, J. Stat. Mech. 1203, P03001 (2012). DOI: 10.1088/1742-5468/2012/03/P03001
[14] S. Moriyama and T. Nosaka, “Superconformal Chern-Simons Partition Functions of Affine D-type Quiver from Fermi Gas”, JHEP 09, 054 (2015). DOI: 10.1007/JHEP09(2015)054
[15] B. Assel, N. Drukker, and J. Felix, “Partition functions of 3d Dˆ-quivers and their mirror duals from 1d free fermions”, JHEP 08, 071 (2015). DOI: 10.1007/JHEP08(2015)071
[16] H. Fuji, S. Hirano, and S. Moriyama, “Summing Up All Genus Free Energy of ABJM Matrix Model”, JHEP 08, 001 (2011). DOI: 10.1007/JHEP08(2011)001
[17] Y. Hatsuda, M. Marino, S. Moriyama, and K. Okuyama, “Non-perturbative e?ects and the refined topological string”, JHEP 09, 168 (2014). DOI: 10.1007/JHEP09(2014)168
[18] A. Grassi, Y. Hatsuda, and M. Marino, “Topological Strings from Quantum Mechanics”, Annales Henri Poincare 17 no. 11, 3177–3235 (2016). DOI: 10.1007/s00023-016-0479-4
[19] N. Kubo, “Fermi gas approach to general rank theories and quantum curves”, JHEP 10, 158 (2020). DOI: 10.1007/JHEP10(2020)158
[20] A. Grassi, Y. Hatsuda, and M. Marino, “Quantization conditions and functional equations in ABJ(M) theories”, J. Phys. A 49 no. 11, 115401 (2016). DOI: 10.1088/1751-8113/49/11/115401
[21] H. Sakai, “Rational Surfaces Associated with Affine Root Systems and Geometry of the Painlevé Equations”, Commun. Math. Phys. 220, 165–229 (2001). DOI: 10.1007/s002200100446
[22] G. Bonelli, A. Grassi, and A. Tanzini, “Quantum curves and q-deformed Painlevé equations”, Lett. Math. Phys. 109 no. 9, 1961–2001 (2019). DOI: 10.1007/s11005-019-01174-y
[23] K. Kajiwara, M. Noumi, and Y. Yamada, “Geometric Aspects of Painlevé Equations”, J. Phys. A 50 no. 7, 073001 (2017). DOI: 10.1088/1751-8121/50/7/073001
[24] T. Kitao, K. Ohta, and N. Ohta, “Three-dimensional gauge dynamics from brane configurations with (p,q)-Fivebrane”, Nucl. Phys. B 539, 79–106 (1999). DOI: 10.1016/S0550-3213(98)00726-3
[25] O. Bergman, A. Hanany, A. Karch, and B. Kol, “Branes and supersymmetry breaking in three-dimensional gauge theories”, JHEP 10, 036 (1999). DOI: 10.1088/1126-6708/1999/10/036
[26] T. Furukawa, K. Matsumura, S. Moriyama, and T. Nakanishi, “Duality cascades and a?ne Weyl groups”, JHEP 05, 132 (2022). DOI: 10.1007/JHEP05(2022)132
[27] S. Moriyama and T. Nosaka, “Exact Instanton Expansion of Superconformal Chern-Simons Theories from Topological Strings”, JHEP 05, 022 (2015). DOI: 10.1007/JHEP05(2015)022
[28] S. Moriyama, S. Nakayama, and T. Nosaka, “Instanton Effects in Rank Deformed Superconformal Chern-Simons Theories from Topological Strings”, JHEP 08, 003 (2017). DOI: 10.1007/JHEP08(2017)003
[29] S. Moriyama, T. Nosaka, and K. Yano, “Superconformal Chern-Simons Theories from del Pezzo Geometries” JHEP 11, 089 (2017). DOI: 10.1007/JHEP11(2017)089
[30] N. Kubo, S. Moriyama, and T. Nosaka, “Symmetry Breaking in Quantum Curves and Super Chern-Simons Matrix Models”, JHEP 01, 210 (2019). DOI: 10.1007/JHEP01(2019)210
[31] N. Kubo and S. Moriyama, “Hanany-Witten Transition in Quantum Curves”, JHEP 12, 101 (2019). DOI: 10.1007/JHEP12(2019)101
[32] A. Hanany and E. Witten, “Type IIB superstrings, BPS monopoles, and threedimensional gauge dynamics”, Nucl.Phys. B 492, 152–190 (1997). DOI: 10.1016/S0550-3213(97)00157-0
[33] B. Assel, “Hanany-Witten effect and SL(2, Z) dualities in matrix models”, JHEP 10, 117 (2014). DOI: 10.1007/JHEP10(2014)117
[34] M. Honda and N. Kubo, “Non-perturbative tests of duality cascades in three dimensional supersymmetric gauge theories”, JHEP 07, 012 (2021). DOI: 10.1007/JHEP07(2021)012
[35] S. Moriyama and T. Nosaka, in preparation.
[36] R. Kashaev, M. Marino, and S. Zakany, “Matrix Models from Operators and Topological Strings, 2”, Annales Henri Poincare 17 no. 10, 2741–2781 (2016). DOI: 10.1007/s00023-016-0471-z
[37] M. Bershtein and A. Shchechkin, “Painlevé equations from Nakajima–Yoshioka blowup relations”, Lett. Math. Phys. 109 no. 11, 2359–2402 (2019). DOI: 10.1007/s11005-019-01198-4
[38] M. Bershtein, P. Gavrylenko, and A. Marshakov, “Cluster Toda chains and Nekrasov functions”, Theor. Math. Phys. 198 no. 2, 157–188 (2019). DOI: 10.1134/S0040577919020016
[39] T. Nosaka, “SU(N) q-Toda equations from mass deformed ABJM theory”, JHEP 06, 060 (2021). DOI: 10.1007/JHEP06(2021)060
[40] M. Marino and P. Putrov, “Exact Results in ABJM Theory from Topological Strings”, JHEP 06, 011 (2010). DOI: 10.1007/JHEP06(2010)011
[41] M. Honda and K. Okuyama, “Exact results on ABJ theory and the re?ned topological string”, JHEP 08, 148 (2014). DOI: 10.1007/JHEP08(2014)148
[42] A. Grassi and M. Marino, “M-theoretic matrix models”, JHEP 02, 115 (2015). DOI: 10.1007/JHEP02(2015)115
[43] S. H. Katz, A. Klemm, and C. Vafa, “Geometric engineering of quantum field theories”, Nucl. Phys. B 497, 173–195 (1997). DOI: 10.1016/S0550-3213(97)00282-4
[44] G. Bonelli, O. Lisovyy, K. Maruyoshi, A. Sciarappa, and A. Tanzini, “On Painlevé/-gauge theory correspondence”, Lett. Matth. Phys. 107 no. 12, 2359–2413 (2017). DOI: 10.1007/s11005-017-0983-6
[45] M. Jimbo, H. Nagoya, and H. Sakai, “CFT approach to the q-Painlevé VI equation“, J. Integrab. Syst. 2 no. 1, 1 (2017). DOI: 10.48550/arXiv.1706.01940
[46] N. Seiberg, “Five-dimensional SUSY field theories, nontrivial fixed points and string dynamics”, Phys. Lett. B 388, 753–760 (1996). DOI: 10.1016/S0370-2693(96)01215-4
[47] V. Mitev, E. Pomoni, M. Taki, and F. Yagi, “Fiber-Base Duality and Global Symmetry Enhancement”, JHEP 04, 052 (2015). DOI: 10.1007/JHEP04(2015)052
[48] T. Tsuda and T. Masuda, “q-Painlevé VI Equation Arising from q-UC Hierarchy”, Communications in Mathematical Physics 262 no. 3, 595–609 (2006) 595–609. DOI: 10.1007/s00220-005-1461-z
[49] G. Bonelli, A. Grassi, and A. Tanzini, “Seiberg–Witten theory as a Fermi gas”, Lett. Math. Phys. 107 no. 1, 1–30 (2017). DOI: 10.1007/s11005-016-0893-z
[50] A. B. Zamolodchikov, “Painlevé III and 2-d polymers”, Nucl. Phys. B 432, 427–456 (1994). DOI: 10.1016/0550-3213(94)90029-9
[51] C. A. Tracy and H. Widom, “Fredholm determinants and the mkdv/sinh-gordon hierarchies”, Commun. Math. Phys. 179, 1–9 (1996). DOI: 10.1007/BF02103713
[52] B. M. McCoy, C. A. Tracy, and T. T. Wu, “Painlevé Functions of the Third Kind”, J. Math. Phys. 18, 1058 (1977). DOI: 10.1063/1.523367