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Abstract. In this paper, we review the novel connection between a theory of N
M2-branes on (C2/Z2×C/Z2)/Zk and a discrete integrable system. Besides the IR du-
ality induced by the Hanany-Witten transitions in the type IIB brane construction, the
Fermi gas formalism tells us that the partition function of this theory enjoys a larger
discrete symmetry which is the Weyl group W (D5) of D5 = SO(10). The Fermi gas
formalism, together with the topological string/spectral theory correspondence and
the connection between the integrable systems and the Nekrasov partition functions
recently found, further suggests that the grand partition function of this M2-brane
partition function satisfies a bilinear difference equation associated with W (D5), called
q-deformed Painlevé VI. By using the exact values of the partition functions we identify
the explicit expression of the bilinear equations and confirm that these equations are
indeed satisfied for higher order in the chemical potential dual to the rank N . This
article is based on [1] and [2].
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1 Introduction

One of the motivations to study supersymmetric gauge theories is to find new aspects of
quantum field theories with the help of the solvability of the models. To pursue this direction
it is important to choose a model which is sufficiently complex so that it would enjoy some
non-trivial mathematical structures to be revealed, and highly tractable at the same time.

Among other examples, a class of the N ≥ 4 three-dimensional quiver Chern-Simons
matter theories [3–8] fits well with these requirements. Each of these theories describes a
stack of M2-branes in M-theory on a certain background geometry, hence we may expect that
these theories have rich mathematical structure related to M-theory. On the other hand, the
supersymmetry allows us to reduce the path integral for the partition function Z(N) to an
O(N)-dimensional ordinary integration by the supersymmetry localization technique [9,10].
This O(N) dimensional integration can be evaluated by the standard techniques in the
analysis of the matrix models such as the large N saddle point approximation and the ’t Hooft
expansion. Indeed by the large N saddle point approximation the large N leading behavior
of the free energy − logZ(N) was obtained [11], which reproduces the N3/2 scaling behavior
argued in the gravity side [12]. Moreover, for these theories there is another powerful way
to evaluate the partition function called Fermi gas formalism [13], which is not available for
other general supersymmetric theories.1 Indeed, various non-trivial structures in the large
N expansion of the partition function were revealed by using the Fermi gas formalism. For
example, all order 1/N perturbative corrections to the free energy were found to add up to
the Airy function characterized only by three parameters.2 Furthermore, the infinite series
of the 1/N non-perturbative corrections are also given by the large radius expansion of the
free energy of refined topological string on a certain Calabi-Yau threefold associated with
the background orbifold of the M2-branes [17,18].

The Fermi gas formalism is not only a powerful computational tool, but also provides a
new connection between the theories of M2-branes and quantum algebraic curves. The fact
that all order 1/N perturbative corrections add up to the Airy function follows immediately
from the correspondence with a curve. The curve is also the mirror curve of the target Calabi-
Yau threefold of the topological string which precisely encodes the Calabi-Yau threefold
including its moduli parameters.

From the point of view of the quantum curve, the IR duality of the original theory of
M2-branes is realized as the discrete symmetry of the moduli space of the curve induced by
the coordinate transformations. In general, the symmetry of the curve is larger than the
known IR duality (see e.g. [19]) and hence the picture of the quantum curve tells us the
new symmetry of the theory. Furthermore, recently it was found that the partition function
of the ABJ theory, the U(N1)k × U(N2)−k circular quiver superconformal Chern-Simons
theory describing min(N1, N2) M2-branes on C4/Zk [5–8], satisfies an infinitely many bilinear
relations among different values of N1, N2 [20]. In terms of the grand canonical partition
function, these relations are equivalent to one of the q-deformed Painlevé equations called
q-Painlevé III3 (qPIII3). The q-deformed Painlevé equations are classified by the discrete
symmetries of genus-one curves (or the curves themselves) [21], and qPIII3 coincides with
the one associated with the symmetry of the curve (or the curve itself) of the Fermi gas
formalism of the ABJ theory [22]. In [1, 2], we found another more non-trivial example

1Note that the existence of the Fermi gas formalism and the subsequent properties of the partition
functions were also confirmed for a slightly larger class of the Chern-Simons matter theories such as the
circular quiver theories with N = 3 and the theories with affine D̂-type quiver diagram [14, 15]. However,
for simplicity in this article, we focus on the N = 4 theories.

2Historically the large N leading behavior and the resummation of the all order 1/N perturbative cor-
rections were first obtained through the ’t Hooft expansion [16].
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for this connection. Namely, we consider the the U(N1)k × U(N2)0 × U(N3)−k × U(N4)0
circular quiver superconformal Chern-Simons theory which describes min(N1, N2, N3, N4)
M2-branes on (C2/Z2 × C2/Z2)/Zk. The curve associated with the Fermi gas formalism
of this theory is the genus-one curve with W (D5) symmetry acting on the five-dimensional
moduli space. The moduli parameters are identified with the three relative ranks of the four-
node quiver together with the two degrees of freedom of the Fayet-Illiopoulos parameters.
Hinted with the dictionary between the moduli parameters of the curves and the three-
dimensional parameters as well as the exact expressions for the partition functions at the
lowest ranks, in [1, 2] we have identified the explicit expressions for the discrete bilinear
relations for the grand partition function of this four-node super Chern-Simons theory and
also provides non-trivial evidences that the relations are indeed satisfied also for higher order
in the fugacity dual to the lowest rank. These bilinear relations are the same as the Hirota
bilinear form of the q-deformed Painlevé VI equation (qPVI), which is associated with the
W (D5) symmetry under the Sakai classification [21,23].

This review is organized as follows. In the next section we introduce the model of our
concern, the four-node quiver superconformal Chern-Simons theory, and fix the notation
for the parameters and the overall normalization of the partition function. In section 3 we
explain the Fermi gas formalism for the partition function and identify the quantum curve
associated with this theory. Although it is difficult to construct the Fermi gas formalism and
invert the density operator for general values of the relative ranks and the FI parameters,
under a few assumptions we can skip such steps and obtain the quantum curve directly by
the interpolations from special points, as we review in section 6. In section 4 we explain
the relation between the grand partition function and qPVI. In section 5 we summarize and
discuss possible future directions.

2 The model

The model we consider in this article is the three-dimensional N = 4 circular quiver super-
symmetric Chern-Simons matter theory given by the following quiver diagram

U(N −M0 −M3 + k)k,iZ1
U(N −M1 −M3 + k)0,−iZ1

U(N +M0 −M3 + k)−k,−iZ3U(N)0,iZ3

. (1)

The theory consists of the U(ni) vector multiples with Chern-Simons action with level ki
and the Fayet-Illiopoulos parameter ζi associated with each node labeled by U(ni)ki,ζi , and
pairs of U(ni)×U(nj)-bifundamental chiral multiplet associated with each bond connecting
two nodes labeled by U(ni)ki,ζi and U(nj)kj ,ζj . In the following, we use the abbreviation
M = (M0,M1,M3, Z1, Z3) for the three relative ranks and two Fayet-Illiopoulos parameters.
This theory can be realized by the following brane setup in type IIB superstring theory
[3, 4, 24,25]

N −M0 −M3 + k N −M1 −M3 + k N +M0 −M3 + k N

0 iZ1 0 −iZ3 , (2)
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where the horizontal lines are stacks of D3-branes, the vertical blue lines are NS5-branes
and the dashed red lines are (1, k)5-branes stretched in the following directions:

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

D3 − − − −
NS5 − − − − − −
(1, k)5 − − − θ45 θ67 θ89

, (3)

where θij stands for the direction in ij-plane tilted from the i-axis by an angle arctan k. Each
stack of D3-branes stretched between a pair of 5-branes corresponds to a gauge node, where
the Chern-Simons level is given by the difference of the two D5-charges of the 5-branes [24].
Each 5-brane is also assigned with the Fayet-Illiopoulos parameter which are written below
the 5-branes in the figure, with which the Fayet-Illiopoulos parameter on the gauge node is
given by the difference of the two Fayet-Illiopoulos parameters.

The partition function of the theory (1) can be calculated by the supersymmetry local-
ization formula as [10]

Zk,M (N) =
eiPk,M (N)

N1!N2!N3!N4!

∫ N1∏
i=1

dλ
(1)
i

2π

N2∏
i=1

dλ
(2)
i

2π

N3∏
i=1

dλ
(3)
i

2π

N4∏
i=1

dλ
(4)
i

2π

× e
ik
4π

∑N1
i=1(λ

(1)
i )2− ik

4π

∑N2
i=1(λ

(2)
i )2eZ1(

∑N1
i=1 λ

(1)
i −

∑N2
i=1 λ

(2)
i )−Z3(

∑N3
i=1 λ

(3)
i −

∑N4
i=1 λ

(4)
i )

×
4∏

a=1

∏Na

i<j(2 sinh
λ
(a)
i −λ

(a)
j

2 )2∏Na

i=1

∏Na+1

j=1 2 cosh
λ
(a)
i −λ

(a+1)
j

2

, (4)

where N1 = N−M0−M3+k, N2 = N−M1−M3+k, N3 = N+M0−M3+k and N4 = N .
Note that N5 and λ

(5)
i are identified with N1 and λ

(1)
i . We have also introduced an overall

phase eiPk,M (N)

eiPk,M (N) = exp
[
iπ
(
M0N +

M3
0 −M0

3k
+

M0(M
2
1 +M2

3 )

2k
− 2M0M3 +

3kM0

2
− 2M1(Z1 + Z3)

+
(M0 −M1)Z

2
1

k
+

(M0 −M3 + k)Z2
3

k
+

(M0 −M1 −M3 − k)Z1Z3

k

)]
(5)

by hand so that the coefficients of the qPVI bilinear relations simplify as (75) below.

3 Fermi gas formalism and quantum curve

The partition function (4) is conjectured to be rewritten into the following form [1,26]

Zk,M (N) =
Zk,M (0)

N !

∫
dNx

(2π)N
det
i,j

[⟨xi|ρ̂M |xj⟩], (6)

with some one-dimensional quantum mechanical operator ρ̂M which depends on M =
(M0,M1,M3, Z1, Z3) as well as k. Here we have introduced the following notation for one-
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dimensional quantum mechanics:

|x⟩: eigenstate of position operator x̂,

|p⟩⟩: eigenstate of momentum operator p̂,

[x̂, p̂] = 2πik,

⟨x|y⟩ = 2πδ(x− y), ⟨⟨p|p′⟩⟩ = 2πδ(p− p′),

⟨x|p⟩⟩ = 1√
k
e

ixp
2πk , ⟨⟨p|x⟩ = 1√

k
e−

ixp
2πk . (7)

Note that the right-hand side of (6), up to the overall factor Zk,M (N = 0), is of the same
form as the partition function of N -particle ideal Fermi gas with single-particle Hamiltonian
given by − log ρ̂M , hence this rewriting is called Fermi gas formalism [13].

When (M0,M1,M3) = (0, 0, k), namely, N1 = N2 = N3 = N4 = N , the fermi gas
formalism (6) can be derived relatively easily by using the Cauchy determinant formula∏N

i<j 2 sinh
xi−xj

2k

∏N
i<j 2 sinh

yi−yj

2k∏N
i,j 2 cosh

xi−yj

2k

= kN det
i,j

[ 1

2k cosh
xi−yj

2k

]
= kN det

i,j

[
⟨xi|

1

2 cosh p̂
2

|xj⟩
]
,

(8)

and the Cauchy-Binet formula

1

N !

∫
dNz det

i,j
[fi(zj) det

i,j
[gi(zj)] = det

i,j

[∫
dzfi(z)gj(z)

]
. (9)

Here in the rightmost side of (8) we have used the notations for one-dimensional quantum
mechanics (7). The derivation goes as follows. First applying the Cauchy determinant
formula (8) to the one-loop determinant factors in (4) we obtain

Zk,(0,0,k,Z1,Z3)(N)

=
e−2πiZ1Z3

(N !)4

∫
dNλ

(1)
i

(2π)N
dNλ
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i )2e
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k
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(1)
i
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⟨λ(1)
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2 cosh p̂
2

|λ(2)
i ⟩
]
e−

Z1
k

∑N
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× det
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⟨λ(2)
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2 cosh p̂
2

|λ(3)
i ⟩
]
e−
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4πk

∑N
i=1(λ

(3)
i )2e−

Z3
k

∑N
i=1 λ

(3)
i

× det
i,j

[
⟨λ(3)

i | 1

2 cosh p̂
2

|λ(4)
i ⟩
]
e

Z3
k

∑N
i=1 λ

(4)
i det

i,j

[
⟨λ(4)

i | 1

2 cosh p̂
2

|λ(1)
i ⟩
]
. (10)

Now we can convolute the determinants by applying the Cauchy-Binet formula (9) to obtain

Zk,(0,0,k,Z1,Z3)(N)

=
e−2πiZ1Z3

N !

∫
dNx

(2π)N

det
i,j

[
⟨xi|e

i
4πk x̂2

e
Z1
k x̂ 1

2 cosh p̂
2

e−
Z1
k x̂ 1

2 cosh p̂
2

e−
i

4πk x̂2

e−
Z3
k x̂ 1

2 cosh p̂
2

e
Z3
k x̂ 1

2 cosh p̂
2

|xj⟩
]
. (11)

This is precisely of the form (6). After a similarity transformation, ρ̂(0,0,k,Z1,Z3) can be
written as

ρ̂(0,0,k,Z1,Z3) =
1

2 cosh x̂
2

1

2 cosh p̂+2πiZ1

2

1

2 cosh p̂
2

1

2 cosh x̂−2πiZ3

2

. (12)
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t̃4
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t̃2

m̃2

t̃1

m̃1

Figure 1: The curve ρ−1
M (x, p) = const. of the four-node quiver Chern-Simons theory (1).

Notice that this density matrix can be obtained directly from the type IIB brane setup (2)
through the following assignments of operators to each 5-branes

N N

ζ

→ 1

2 cosh x̂+2πζ
2

,
N N

ζ

→ 1

2 cosh p̂+2πζ
2

. (13)

This formula holds also for the setups containing any number of NS5-branes and (1, k)5-
branes in any order, as long as the number of D3-branes is the same for all segments.

The inverse of ρ̂(0,0,k,Z1,Z3), which we shall call “quantum curve”, takes the following form

ρ̂−1
(0,0,k,Z1,Z3)

=
∑

m=−1,0,1

∑
n=−1,0,1

cmne
mx̂+np̂. (14)

Indeed, the classical equation ρ(0,0,k,Z1,Z3)(x, p)
−1 =

∑
m,n cmne

mx+np = const. defines a
genus one curve with eight asymptotic points, as depicted in figure 1. Here we have defined
the classical curve by the Weyl ordering according to the prescription in [18]. The asymptotic
loci are obtained from cmn’s by solving the quadratic equations in ep obtained by sending
x → ±∞ or the equations obtained by sending p → ±∞. For example, the two asymptotic
loci ep = m̃1, m̃2 at x = ∞ are the two solutions of c1,1ep + c1,0 + c1,−1e

−p = 0.
Besides the overall rescaling and the constant c0,0, the curve has five moduli, which

correspond to the eight asymptotic loci up to the trivial translations x → x + const., p →
p + const. and an additional constraint due to Vieta’s formula, 8 − 2 − 1 = 5. There are
several pieces of evidence that the five-dimensional moduli space is spanned by turning on
the three rank deformations (M0,M1,M3) and the two FI parameters (Z1, Z2) [1, 26–31].
Although it is difficult to construct the Fermi gas formalism (and then calculate the inverse
of ρ̂M ) for general rank deformations, we can identify the relation between the rank/FI
parameters and the moduli of the curve by interpolation from special points. Namely, a
type IIB brane configuration can be transformed to another brane configuration by the
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Hanany-Witten transition [32,33]

· · · · · ·
N1 N2 N3

(1, sk)5

ζ

(1, s′k)5

ζ ′

↔ · · · · · ·
N1 N1 +N3 −N2 + |s− s′|k N3

(1, s′k)5

ζ ′

(1, sk)5

ζ

. (15)

When the rank differences are some special values proportional to k, the resulting brane con-
figuration has a uniform rank, where ρ̂M and its inverse can be obtained straightforwardly
by applying the rule (13). Since the Hanany-Witten transition induces an IR duality, we
conclude that the quantum curve thus obtained also gives the quantum curve for the con-
figuration before the Hanany-Witten transition.3

Let us first figure out the values of m̃i, t̃i for (M0,M1,M3) = (0, 0, k), where ρ̂(0,0,k,Z1,Z3)

is given by (12). It is straightforward to calculate the inverse of ρ̂(0,0,k,Z1,Z3) and organize
it in the form (14), as

ρ̂−1
(0,0,k,Z1,Z3)

=
(
2 cosh

x̂− 2πiZ3

2

)(
2 cosh

p̂

2

)(
2 cosh

P̂ + 2πiZ1

2

)(
2 cosh

x̂

2

)
= eπi(Z1−Z3)ex̂+p̂ + eπiZ1(2 cosπ(Z3 − k))ep̂ + eπi(Z1+Z3)e−x̂+p̂

+ e−πiZ3(2 cosπZ1)e
x̂ + 4 cosπZ1 cosπZ3 + eπiZ3(2 cosπZ1)e

−x̂

+ eπi(−Z1−Z3)ex̂−p̂ + e−πiZ1(2 cosπ(Z3 + k))e−p̂ + eπi(−Z1+Z3)e−x̂−p̂. (16)

From this we obtain

ρ(0,0,k,Z1,Z3)(x, p)
−1|x→∞ = 0 → ep = m̃′

1, m̃
′
2 = −e−2πiZ1 ,−1,

ρ(0,0,k,Z1,Z3)(x, p)
−1|x→−∞ = 0 → ep = m̃′

3, m̃
′
4 = −1,−e−2πiZ1 ,

ρ(0,0,k,Z1,Z3)(x, p)
−1|p→∞ = 0 → ex = t̃′1, t̃

′
3 = −eπi(2Z3−k),−eπik,

ρ(0,0,k,Z1,Z3)(x, p)
−1|p→−∞ = 0 → ex = t̃′2, t̃

′
4 = −e−πik,−eπi(2Z3+k), (17)

where we have denoted the asymptotic loci with prime, m̃′
i, t̃

′
i, taking into account the

gauge degrees of freedom of the overall rescalings corresponding to x → x + cosnt. and
p → p+ const., which we shall fix below (21). Next, let us consider the following two brane
configurations

N N N N

0 iZ1 −iZ3 0
,

N N N N

0 −iZ3 iZ1 0
. (18)

Since these configurations are of uniform ranks, we can apply the formulas (13) to write down
ρ̂ and read off m̃′

i, t̃
′
i from the coefficients in ρ̂−1. On the other hand, these configurations

3Precisely speaking, we can prove when the 5-branes are of a different kind [34], and also argue when
the 5-branes are of the same kind [35], that the partition functions before and after the brane exchange are
different only by an overall factor independent of the overall rank N . Hence we assume that the density
matrix ρ̂M of the Fermi gas formalism, which is defined after normalizing the partition function by the
N -independent part Zk,M (0), is the same for the two brane configurations (15).
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can be transformed, by moving the NS5-brane with FI parameter −iZ3 to right under the
Hanany-Witten rule (15), into the configuration with the original ordering of 5-branes (2)
with (M0,M1,M3) = (k2 ,

k
2 ,

k
2 ) and (M0,M1,M3) = (k, 0, 0) respectively. In summary, now

we have obtained the values of the asymptotic loci at three special points:

(M0,M1,M3) m̃′
1 m̃′

2 m̃′
3 m̃′

4 t̃′1 t̃′2 t̃′3 t̃′4
(0, 0, k) −e−2πiZ1 −1 −1 −e−2πiZ1 −eπi(2Z3−k) −e−πik −eπik −eπi(2Z3+k)

(k2 ,
k
2 ,

k
2 ) −e−2πiZ1 −eπik −e−πik −e−2πiZ1 −e2πiZ3 −e−πik −eπik −e2πiZ3

(k, 0, 0) −eπi(−2Z1+k) −eπik −e−πik −eπi(−2Z1−k) −eπi(2Z3+k) −e−πik −eπik −eπi(2Z3−k)

,

(19)

where we have chosen the ordering of m̃′
1,2, m̃′

3,4, t̃′1,3 and t̃′2,4 for (M0,M1,M3) = (k2 ,
k
2 ,

k
2 )

and (M0,M1,M3) = (k, 0, 0) so that the Z1, Z3-dependences of the asymptotic loci are the
same as those for (M0,M1,M3) = (0, 0, k). By assuming that the M0,M1,M3-dependences
of the loci are simple exponential functions eπi(aM0+bM1+cM3), we can interpolate (19) to
general M0,M1,M3 by determining a, b, c for each locus as

m̃′
1 = −eπi(M0−M1−2Z1), m̃′

2 = −eπi(M0+M1),

m̃′
3 = −eπi(−M0−M1), m̃′

4 = −eπi(−M0+M1−2Z1),

t̃′1 = −eπi(M0−M3+2Z3), t̃′2 = −eπi(−M0−M3),

t̃′3 = −eπi(M0+M3), t̃′4 = −eπi(−M0+M3+2Z3). (20)

By choosing the gauge degrees of freedom associated with the translations of x and p
such that m̃1m̃2m̃3m̃4 = t̃1t̃2t̃3t̃4 = 1, we may write the result as

m̃1 = eπi(M0−M1−Z1), m̃2 = eπi(M0+M1+Z1),

m̃3 = eπi(−M0−M1+Z1), m̃4 = eπi(−M0+M1−Z1),

t̃1 = eπi(M0−M3+Z3), t̃2 = eπi(−M0−M3−Z3),

t̃3 = eπi(M0+M3−Z3), t̃4 = eπi(−M0+M3+Z3). (21)

See figure 2. Note that the result (21) is consistent with the asymptotic loci for four parame-
ter deformation with −M1−M3+k = 0 and ±M0−M3+k ≥ 0 (namely, N1, N3 ≥ N2 = N4)
obtained by constructing ρ̂M and its inverse explicitly [1].

Note that the moduli space of the classical curve ρM (x, p)−1 = const. enjoys a discrete
symmetry of W (D5), the Weyl group of D5, generated by the following transformations

s1 : (M0,M1,M3, Z1, Z3) → (M0,M1, Z3, Z1,M3),

s2 : (M0,M1,M3, Z1, Z3) → (M0,M1,−Z3, Z1,−M3),

s3 : (M0,M1,M3, Z1, Z3) → (M3,M1,M0, Z1, Z3),

s4 : (M0,M1,M3, Z1, Z3) → (−M1,−M0,M3, Z1, Z3),

s5 : (M0,M1,M3, Z1, Z3) → (M0, Z1,M3,M1, Z3). (22)

The curves at different values of M = (M0,M1,M3, Z1, Z3) connected through W (D5)
are equivalent under the coordinate transformations. Correspondingly, the quantum curve
(14) ρ̂M is also invariant under the same W (D5) up to a similarity transformation ρ̂M →
Û ρ̂M Û−1 = ρM (Û x̂Û−1, Û p̂Û−1). This implies that the normalized partition function
Zk,M (N)
Zk,M (0) is invariant under W (D5). As we have already seen above, a part of this W (D5)
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ex

ep

(0, eπi(−M0+M1−Z1))

(eπi(−M0+M3+Z3), 0)

(0, eπi(−M0−M1+Z1))

(eπi(M0+M3−Z3),∞)

(eπi(−M0−M3−Z3), 0)

(∞, eπi(M0+M1+Z1))

(eπi(M0−M3+Z3),∞)

(∞, eπi(M0−M1−Z1))

Figure 2: The asymptotic loci of the curve for the configuration (2) with generic
(M0,M1,M3, Z1, Z3) obtained by the interpolation.

symmetry can be understood as the IR dualities induced by the Hanany-Witten transitions
(15). However, the physical interpretations for the other elements such as the exchanges of
rank differences {Mi} and the FI parameters {Zi}, or those which do not mix {Mi} and
{Zi} but still cannot be generated by the Hanany-Witten effects [19], are still not clear. It
would be interesting to provide physical interpretation for these extra symmetries and also
to test whether they would hold for the other observables or not.

4 Connection to q-Painlevé VI equation

In the previous section, we found that the partition function of the four-node quiver Chern-
Simons theory (1) enjoys the structure of the quantization of the curve in figure 2, and hence
the partition function normalized at N = 0 enjoys the discrete symmetry of W (D5) (22).
Note that this symmetry is larger than those manifest in the type IIB brane setup (2).

Interestingly, in [1, 2] we found that the partition function, or more precisely the grand
partition function Ξk,M (κ)

Ξk,M (κ) =

∞∑
N=0

κNZk,M (N) (23)

solves the q-discrete integrable system associated with the W (D5) Weyl group called q-
deformed Painlevé VI (qPVI). Although a similar connection between a matrix model and
a discrete integrable system was already known for the ABJ matrix model [22] where the
corresponding integrable system is q-deformed Painlevé III3 (qPIII3), our result provides a
non-trivial generalization with more parameters. Below, before introducing our main results
we first review the simpler connection between the ABJ matrix model and qPIII3 . Alongside
we also briefly introduce the notion of Painlevé equations and its q-discretization. After
that, we display the concrete statement on the grand partition function of the four-node
quiver and explain how we discovered and confirmed such statements.
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4.1 Schematical structure of the equations
The partition function of the U(N)k × U(N +M)−k ABJ theory is given by the following
2N +M dimensional integration

ZABJ
k,M (N) =

(−1)MN+
M(M−1)

2

N !(N +M)!

∫
dNx

(2π)N
dN+My

(2π)N+M
e

ik
4π (

∑N
i=1 x2

i−
∑N+M

i=1 y2
i )

×
∏N

i<j(2 sinh
xi−xj

2 )2
∏N+M

i<j (2 sinh
xi−xj

2 )2∏N
i=1

∏N+M
j=1 (2 cosh

xi−yj

2 )2
, (24)

which can be written in the Fermi gas formalism

ZABJ
k,M (N) =

ZABJ
k,M (0)

N !

∫
dNx

(2π)N

N

det
i,j

⟨xi|ρ̂ABJM
M |xj⟩, (25)

where

ZABJ
k,M (0) = i

M2

2 −Me−
πiM(M2−1)

6k k−
M
2

M∏
r>s

2 sin
π(r − s)

k
(26)

and

ρ̂ABJ
M = (−1)M

1

2 cosh x̂+πiM
2

( M∏
r=1

tanh
x̂− tM,r

2k

) 1

2 cosh p̂
2

, (27)

with

tn,r = 2πi
(n+ 1

2
− r
)
. (28)

The inverse of ρ̂ABJ
M is obtained by writing (27) with quantum dilogarithm functions as

follows [36]. By using quantum dilogarithm Φb(z)

Φb(z) =
(−e2πbz+πib2 ; e2πib

2

)∞
(−e2πib−1z−πib−2 ; e−2πib−2)∞

, (29)

with b =
√
k, which satisfy the following relations

Φb(z + ib)

Φb(z)
=

1

1 + eπib2e2πbz
,

Φb(z + ib−1)

Φb(z)
=

1

1 + e−πib−2e2πb−1z
, (30)

we can express ρ̂ABJ
M as

ρ̂ABJ
M = e

πiM
2 e

x̂
2
Φ( x̂

2πb +
ib
2 − iM

2b )

Φ( x̂
2πb −

ib
2 + iM

2b )

Φ( x̂
2πb +

iM
2b )

Φ( x̂
2πb −

iM
2b )

1

2 cosh p̂
2

. (31)

By using the first identity of quantum dilogarithm in (30), we find that the inverse of ρ̂ABJ
M

is written, up to a similarity transformation which does not affect the partition functions
(25), as a Laurent polynomial of e

x̂
2 , e

p̂
2 , which reads

(ρ̂ABJ
M )−1 = Û−1(ρ̂′)−1Û , Û =

Φb(
x̂

2πb −
ib
2 + iM

2b )

Φb(
x̂

2πb +
ib
2 − iM

2b )
e−

x̂
2 , (32)
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ex
′

ep
′

Figure 3: The classical curve ρ′(x, p)−1 = const. corresponding to (33).

with

(ρ̂′)−1 = e−
πik
4 (ex̂

′
+ e−p̂′

+ ep̂
′
+ eπi(k−2M)e−x̂′

). (33)

Here we have redefined the canonical position/momentum operators

x̂′ =
x̂+ p̂

2
− 3πiM

2
+

πik

2
, p̂′ =

−x̂+ p̂

2
− πiM

2
, (34)

which satisfy [x̂′, p̂′] = πik, to simplify the coefficients of the Laurent polynomial. The
classical limit of (33) gives a genus-one curve with four asymptotic points, as depicted in
figure 3.

Fermi gas formalism is also an efficient tool to calculate the exact values of Zk,M (N)
for finite N . In [20, 22] it was observed that these are infinitely many non-linear relations
among the exact values Zk,M (N) at different values of M,N , which are summarized in the
following form

ΞABJ
k,M+1(κ)Ξ

ABJ
k,M−1(κ) = ΞABJ

k,M (κ)2 + eπi(1−
2M
k )ΞABJ

k,M (−κ)2, (35)

where ΞABJ
k,M (κ) is the grand partition function of the ABJ theory with respect to the overall

rank N

ΞABJ
k,M (κ) =

∞∑
N=0

κNZABJ
k,M (N). (36)

The bilinear equation (35) is known as the Hirota bilinear (τ -) form of qPIII3 (or the q-
deformed affine SU(2) Toda equation) [37–39]

τi(qt)τi(q
−1t) = τi(t)

2 + t
1
2 τj(t)

2, (i = 1, 2, j ̸= i), (37)

with the following parameter identification

q = e
4πi
k , t = e2πi(1−

2M
k ), τ1(t) = ΞABJ

k,M (κ), τ2(t) = ΞABJ
k,M (−κ). (38)
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Painlevé equations were originally considered under the motivation to define new spe-
cial functions as solutions of non-linear ordinary differential equations. Partly based on the
insight from the classical integrable systems, Painlevé, et.al. restricted themselves to the
differential equations whose solution does not have a movable (i.e. depending on the initial
conditions) branch point. As a result, they found that the second order ordinary differential
equations with this property and whose general solution cannot be written with hypergeo-
metric or elliptic functions are classified into six types called PI, PII, PIII, PIV, PV and PVI.
PIII3 is a specialization of PIII whose explicit expression is given as

PIII3 :
d2λ

dt2
=

1

λ

(dλ
dt

)2
− 1

t

dλ

dt
+

2λ2

t2
− 2

t
. (39)

By introducing τ -functions τ1, τ2 as

d2(log τ1)

d(log t)2
= λ,

d2(log τ2)

d(log t)2
= tλ−1, (40)

PIII3 is written in the Hirota bilinear form

τi
d2τi

d(log t)2
−
( dτi
d(log t)

)2
= t

1
2 τ2j , (i = 1, 2, j ̸= i). (41)

If we further “q-discretize” the derivative as ∂log tf → f(qt)−f(t)
q−1 , (41) is uplifted to the

difference equation (37).
(q-)Painlevé equations appears in various problems in physics. In particular, it is known

that qPIII3 in τ -form is also satisfied by the discrete Fourier transform of the Nekrasov par-
tition function (called Nekrasov-Okounkov partition function ZNO) of the five dimensional
N = 1 SU(2) pure Yang-Mills theory [37]. Interestingly, the relation between the parameters
of qPIII3 and the 5d parameters precisely coincides with the one read off from ρ′(x, p)−1 by
regarding it as the five-dimensional Seiberg-Witten curve. The fact that the grand partition
function of the ABJ theory and the Nekrasov-Okounkov partition function obeys the same
q-difference equation is consistent with the topological string/spectral theory (TS/ST) cor-
respondence [18]. Indeed, TS/ST correspondence claims4 that the Fredholm determinant of
a trace class operator ρ(x̂, p̂) is given by the discrete Fourier transform of a non-perturbative
completion [42] of the topological string partition function on a non-compact Calabi-Yau
threefold whose mirror curve is ρ(x, p)−1 = const., which is further related, via geometric
engineering [43], to the Nekrasov partition function of five-dimensional theory whose Seiberg-
Witten curve is ρ(x, p)−1 = const.. The correspondence between the q-Painlevé τ -function
and the Nekrasov-Okounkov partition function of five-dimensional N = 1 SU(2) Yang-Mills
theory is known as the q-uplift of the Painlevé/gauge correspondence [44]. Similar connec-
tions exist also for the other q-Painlevé equations, where the Seiberg-Witten curve of the
five-dimensional theory (or its discrete symmetry) is identified with those in the Sakai’s
classification of the q-Painlevé equations by surface/symmetry types [21,23].

From the viewpoint of Painlevé/gauge correspondence, qPVI is characterized as a set of
bilinear equations satisfied by the Nekrasov-Okounkov partition function of 5d N = 1 SU(2)
Yang-Mills theory with Nf = 4 [45]

Z
SU(2),Nf=4
NO (θ0, θ1, θt, θ∞;σ, s; t) =∑

n∈Z

snt(σ+n)2−θ2
t−θ2

0C(θ0, θ1, θt, θ∞;σ + n)Z(θ0, θ1, θt, θ∞;σ + n, t)

(42)
4Although there are still no rigorous proofs for the TS/ST correspondence, the claim is confirmed by

various non-trivial pieces of evidences [17,27–29,40,41].
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with

C(θ0, θ1, θt, θ∞;σ) =

∏
ϵ,ϵ′=± Gq(1 + ϵθ∞ − θ1 + ϵ′σ)Gq(1 + ϵσ − θt + ϵ′θ0)

Gq(1 + 2σ)Gq(1− 2σ)
,

Z(θ0, θ1, θt, θ∞;σ, t) =
∑

λ+,λ−

∏
ϵ,ϵ′=± Nϕ,λϵ′ (q

ϵθ∞−θ1−ϵ′σ)Nλϵ,ϕ(q
ϵσ−θt−ϵ′θ0)∏

ϵ,ϵ′=± Nλϵ,λϵ′ (q
(ϵ−ϵ′)σ)

, (43)

as

τ1(t) = Z
SU(2),Nf=4
NO

(
θ0, θ1, θt, θ∞ +

1

2
;σ, s; t

)
,

τ2(t) = Z
SU(2),Nf=4
NO

(
θ0, θ1, θt, θ∞ − 1

2
;σ, s; t

)
,

τ3(t) = Z
SU(2),Nf=4
NO

(
θ0 +

1

2
, θ1, θt, θ∞;σ +

1

2
, s; t

)
,

τ4(t) = Z
SU(2),Nf=4
NO

(
θ0 −

1

2
, θ1, θt, θ∞;σ − 1

2
, s; t

)
,

τ5(t) = Z
SU(2),Nf=4
NO

(
θ0, θ1 −

1

2
, θt, θ∞;σ, s; t

)
,

τ6(t) = Z
SU(2),Nf=4
NO

(
θ0, θ1 +

1

2
, θt, θ∞;σ, s; t

)
,

τ7(t) = Z
SU(2),Nf=4
NO

(
θ0, θ1, θt −

1

2
, θ∞;σ +

1

2
, s; t

)
,

τ8(t) = Z
SU(2),Nf=4
NO

(
θ0, θ1, θt +

1

2
, θ∞;σ − 1

2
, s; t

)
,

τ1(t)τ2(t)− tq−2θ1τ3(t)τ4(t)− (1− tq−2θ1)τ5(t)τ6(t) = 0, (44)

τ1(t)τ2(t)− tτ3(t)τ4(t)− (1− tq−2θt)τ5(q
−1t)τ6(qt) = 0, (45)

τ1(t)τ2(t)− τ3(t)τ4(t) + (1− tq−2θ1)q2θtτ7(q
−1t)τ8(qt) = 0, (46)

τ1(t)τ2(t)− q2θtτ3(t)τ4(t) + (1− tq−2θt)q2θtτ7(t)τ8(t) = 0, (47)

τ5(q
−1t)τ6(t) + tq−θ1−θ∞+θt− 1

2 τ7(q
−1t)τ8(t)− τ1(q

−1t)τ2(t) = 0, (48)

τ5(q
−1t)τ6(t) + tq−θ1+θ∞+θt− 1

2 τ7(q
−1t)τ8(t)− τ1(t)τ2(q

−1t) = 0, (49)

τ5(q
−1t)τ6(t) + tqθ0+2θtτ7(q

−1t)τ8(t)− qθtτ3(q
−1t)τ4(t) = 0, (50)

τ5(q
−1t)τ6(t) + tq−θ0+2θtτ7(q

−1t)τ8(t)− qθtτ3(t)τ4(q
−1t) = 0. (51)

Here Gq(x) is the q-deformed Barnes G-function characterized by the second order recursion
relation Gq(x+1)Gq(x−1)

Gq(x)2
= 1−qx−1

1−q and Nµ,λ(x) is the five-dimensional Nekrasov factor which
is defined as

Nµ,λ(x) =
∏
2∈λ

(1− q−ℓλ(2)−aµ(2)−1x)
∏
2∈µ

(1− qaλ(2)+ℓµ(2)+1x) (52)

with aλ(2) and ℓλ(2) being the arm length and leg length at point 2 = (i, j) for a Young
diagram λ = (λ1, λ2, · · · , λd) in the Frobenius notation (see figure 4 for example)

aλ(2) =

{
λi − j (i ≤ d)

−j (i > d)
, ℓλ(2) =

{
λ′
j − i (j ≤ d′)

−i (j > d′)
, tλ = (λ′

1, λ
′
2, · · · , λ′

d′): transpose of λ.

(53)
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λ1

λ2

λ3

λ4

λ5

λ6

λ′
1

λ′
2

λ′
3

λ′
4

λ′
5

λ′
6

λ′
7

Figure 4: An example of a pair of Yound diagram λ = (λ1, · · · , λd) and its transpose
tλ = (λ′

1, · · · , λ′
d′). In the figure d = 6, λ = (7, 5, 4, 4, 2, 1), d′ = 7 and tλ = (6, 5, 4, 4, 2, 1, 1).

See [1,45] for detail. Indeed, this theory has global symmetry of D5 which is an enhancement
from the SU(4) flavor symmetry due to the instantons [46,47]. More concretely, the Seiberg-
Witten curve of this theory

q
(m1m2

m3m4

) 1
2

v−1w − ((m1m2)
1
2 + q(m3m4)

− 1
2 )w + vw − q

(m1m2

m3m4

) 1
2

(m3 +m4)v
−1 + E − (m1 +m2)v

+ q(m1m2m3m4)
1
2 v−1w−1 −m1m2((m1m2)

− 1
2 + q(m3m4)

1
2 )w−1 +m1m2vw

−1 = 0,
(54)

where the coefficients are related to θ0, θ1, θt, θ∞ and t as

θ0 =
1

4πi
log

m1

m3
, θ1 =

1

4πi
log(m2m4), θt =

1

4πi
log

1

m1m3
,

θ∞ =
1

4πi
log

m4

m2
,

log t

log q
=

1

4πi
log

q2m2m4

m1m3
, (55)

is of the same form as the quantum curve of the Fermi gas formalism ρ̂−1
M =

∑
m,n=−1,0,1 cmne

mx̂+np̂

of the four-node quiver super Chern-Simons theory (1) with (v, w) = (ex, ep).
Now let us conjecture that the Fredholm determinant of the (2, 2) model gives the τ -

function of qPVI,

τ3d
k,M ∼ Det(1 + κρ̂M ). (56)

From the curves, we can read off the dictionary between the five-dimensional parameters
(θ0, θ1, θt, θ∞, t) and the three-dimensional parameters M = (M0,M1,M3, Z1, Z3) as

θ0 =
M0 − Z1

2
, θ1 =

M1 + Z3

2
, θt =

M1 − Z3

2
,

θ∞ =
−M0 − Z1

2
, t = tM1+M3 = e

2πi(M1+M3)
k , (57)

where we have identified q with the Planck constant of the Fermi gas formalism of the four-
node quiver as q = e

4π2i
ℏ = e

2πi
k , by consulting the result for ABJ theory (38). Then we can

identify how M should be shifted corresponding to each of the tau functions in the bilinear
equations (44)-(51). In this way, we can write down the schematic form of the bilinear
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equations which τ3d
k,M should satisfy, as

(44) → ⃝
∏
±

τ3d
k,M±( 1

2 ,0,0,
1
2 ,0)

+⃝
∏
±

τ3d
k,M±( 1

2 ,0,0,−
1
2 ,0)

+⃝
∏
±

τ3d
k,M±(0,− 1

2 ,
1
2 ,0,−

1
2 )

= 0,

(45) → ⃝
∏
±

τ3d
k,M±( 1

2 ,0,0,
1
2 ,0)

+⃝
∏
±

τ3d
k,M±( 1

2 ,0,0,−
1
2 ,0)

+⃝
∏
±

τ3d
k,M±(0, 12 ,

1
2 ,0,

1
2 )

= 0,

(46) → ⃝
∏
±

τ3d
k,M±( 1

2 ,0,0,
1
2 ,0)

+⃝
∏
±

τ3d
k,M±( 1

2 ,0,0,−
1
2 ,0)

+⃝
∏
±

τ3d
k,M±(0,− 1

2 ,−
1
2 ,0,

1
2 )

= 0,

(47) → ⃝
∏
±

τ3d
k,M±( 1

2 ,0,0,
1
2 ,0)

+⃝
∏
±

τ3d
k,M±( 1

2 ,0,0,−
1
2 ,0)

+⃝
∏
±

τ3d
k,M±(0, 12 ,−

1
2 ,0,−

1
2 )

= 0,

(48) → ⃝
∏
±

τ3d
k,M±(0, 12 ,0,0,

1
2 )

+⃝
∏
±

τ3d
k,M±(0, 12 ,0,0,−

1
2 )

+⃝
∏
±

τ3d
k,M±( 1

2 ,0,
1
2 ,−

1
2 ,0)

= 0,

(49) → ⃝
∏
±

τ3d
k,M±(0, 12 ,0,0,

1
2 )

+⃝
∏
±

τ3d
k,M±(0, 12 ,0,0,−

1
2 )

+⃝
∏
±

τ3d
k,M±(− 1

2 ,0,
1
2 ,−

1
2 ,0)

= 0,

(50) → ⃝
∏
±

τ3d
k,M±(0, 12 ,0,0,

1
2 )

+⃝
∏
±

τ3d
k,M±(0, 12 ,0,0,−

1
2 )

+⃝
∏
±

τ3d
k,M±( 1

2 ,0,−
1
2 ,−

1
2 ,0)

= 0,

(51) → ⃝
∏
±

τ3d
k,M±(0, 12 ,0,0,

1
2 )

+⃝
∏
±

τ3d
k,M±(0, 12 ,0,0,−

1
2 )

+⃝
∏
±

τ3d
k,M±(− 1

2 ,0,−
1
2 ,

1
2 ,0)

= 0.

(58)

We see that the shifts in three terms in each equation are of the following form: (i) two coor-
dinates of M shifted by (±1/2,±1/2), (ii) the same two coordinates shifted by (±1/2,∓1/2)
and (iii) the other three coordinates shifted by (±σ/2,±σ′/2,±σ′′/2) with (σ, σ′, σ′′) one of
{(+++), (+−−), (−+−), (−−+)}. Since Det(1+κρ̂M ) is invariant under W (E5) which is
generated by the simple reflections (22) it is natural to expect that the same equations exist
for all choices for the two components and the three signs, namely 4C2 × 4 = 40 equations
in total. After all, our conjecture is that the Fredholm determinant satisfies the following
equations [2]:

τ3d
k,M (κ) = Fk,MDet(1 + κρ̂M ),

f
(a,b,σc,σd,σe)
1

∏
±

τ3d
k,Mα± 1

2 (δ
a
α+δbα)((γ

(a,b,σc,σd,σe)
1 )±1κ)

+ f
(a,b,σc,σd,σe)
2

∏
±

τ3d
k,Mα± 1

2 (δ
a
α−δbα)((γ

(a,b,σc,σd,σe)
2 )±1κ)

+ f
(a,b,σc,σd,σe)
3

∏
±

τ3d
k,Mα± 1

2 (σcδcα+σdδdα+σeδeα)((γ
(a,b,σc,σd,σe)
3 )±1κ) = 0. (59)

Here we have introduced the overall factors F, f1, f2, f3 and the parameters γ1, γ2, γ3 associ-
ated with the relation between κ and σ as unknown parameters. We would like to fix these
parameters by hand so that the bilinear relations are indeed satisfied.
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4.2 Fixing coefficients F, f1, f2, f3, γ1, γ2, γ3

Since the bilinear relations (59) do not depends explicitly on κ, let us first consider the case
κ = 0 and determine f1, f2, f3 and F from the following bilinear relations

f
(a,b,σ1,σ2,σ3)
1

∏
±

Fk,Mα± 1
2 (δ

a
α+δbα) + f

(a,b,σ1,σ2,σ3)
2

∏
±

Fk,Mα± 1
2 (δ

a
α−δbα)

+ f
(a,b,σ1,σ2,σ3)
3

∏
±

Fk,Mα± 1
2 (σ1δcα+σ2δdα+σ3δeα) = 0. (60)

Note that a part of the information of f1, f2, f3 can be absorbed into F , hence in the
mathematics context the coefficients of the bilinear relations are not regarded essential in
arguing the properties of q-Painlevé equations [48]. Hence a reasonable approach is not to
guess f1, f2, f3, F at the same time, but rather to fix F by hand first and then ask what
f1, f2, f3 are. From the three-dimensional viewpoint there is a natural choice for F :

Fk,M = Zk,M (N = 0), (61)

with which τ3d
k,M is the grand partition function

τ3d
k,M = Ξk,M (κ) =

∞∑
N=0

κNZk,M (N). (62)

Indeed, in the case of the ABJ theory the partition function at N = 0, ZABJ
k,M (0) (26), satisfies

the second order q-difference relation

ZABJ
k,M+1(0)Z

ABJ
k,M−1(0) = (1− e−

2πiM
k )ZABJ

k,M (0)2, (63)

which is the same as qPIII3 (35). Hence we may expect that also in the current case Fk,M =
Zk,M (N = 0) will satisfy the 40 bilinear relations with relatively simple coefficients f1, f2, f3.

In [1] it was found that the partition function of the four-node quiver super Chern-Simons
theory (4) can be written in the following form

Zk,M (N) = eiΘk,M
ZCS
k (L1)Z

CS
k (L2)

N !∫ N∏
i=1

dxi

2π
det

(
[⟨xi|D̂1D̂2|xj⟩](i,j) [⟨xi|D̂1d̂2|−tL,s⟩⟩](i,s)
[⟨⟨tL,r|d̂1D̂2|xj⟩](r,j) [⟨⟨tL,r|d̂1d̂2|−tL,s⟩⟩](r,s)

)
, (64)

where

L1 = −M0 −M3 + k, L2 = M0 −M3 + k, L = −M1 −M3 + k, (65)

tn,r is defined as (28), and

Θk,M =
π

k
(M0 −M1 −M3)Z1Z3 − πZ1Z3 − 2πM1(Z1 + Z3),

ZCS
k (n) =

1

k
n
2

n∏
j<j′

2 sin
π(j′ − j)

k
. (66)

The matrix elements of the (N +L)× (N +L) matrix in the determinant in (64) are written
in the notation of one-dimensional quantum mechanics (7) with the operators D̂1, D̂2, d̂1, d̂2
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give as

D̂1 = e
Z1
k x̂SL1

(x̂)
1

2 cosh p̂−πiL
2

e−
Z1
k x̂CL1

(x̂) , d̂1 = e−
Z1
k x̂CL1

(x̂) ,

D̂2 = CL2
(x̂− 2πiZ3)

1

2 cosh p̂+πiL
2

SL2
(x̂− 2πiZ3) , d̂2 = CL2

(x̂− 2πiZ3) , (67)

where

Sn (x) = in
∏n

r=1 2 sinh
x−tn,r

2k

2 cosh x+πin
2

, Cn (x) =
1∏n

r=1 2 cosh
x−tn,r

2k

. (68)

In particular, the partition function at N = 0 for various k,M0,M1,M3 is given in a
closed form as function of Z1, Z3 as

Zk,M (0) = eiΘk,MZCS
k (L1)Z

CS
k (L2) det

(
[⟨⟨tL,r|d̂VI

1 d̂VI
2 |−tL,s⟩⟩](r,s)

)
= eiΘk,MZCS

k (L1)Z
CS
k (L2) det

(
[Ik,L1+L2

(L+ 1− r − s− Z1, {tL1,r′}
L1

r′=1 ∪ {2πiZ3 + tL2,r′}
L2

r′=1)](r,s)
)
,

(69)

where Ik,n(α, {βa}) denotes the following integration5

Ik,n(α, {βa}) =
∫ ∞

−∞

dx

2πk

e
αx
k∏n

a=1 2 cosh
x−βa

2k

=
1

e−πiα − (−1)neπiα

n∑
a=1

e
αβa
k∏

a′ (̸=a) 2i sinh
βa−βa′

2k

.

(70)

By using these results, we indeed find that Zk,M (0) satisfies the following 40 bilinear rela-
tions:

e−
πi
2k (σcc+σdd+σee)S

(1)
M

∏
±

Zk,M± 1
2 (δ

a
α+δbα)(0) + e

πi
2k (σcc+σdd+σee)S

(1)
M

∏
±

Zk,M± 1
2 (δ

a
α−δbα)(0)

+ S
(3)
M

∏
±

Zk,M± 1
2 (σcδcα+σdδdα+σeδeα)(0) = 0, (71)

where S
(1)
M , S

(2)
M and S

(3)
M for each (a, b;σc, σd, σe) are

(a, b) = (M1, Z1) → S
(1)
M = S+

1 , S
(2)
M = S−

1 , S
(3)
M = S

σM0
3 ,

(a, b) = (M3, Z3) → S
(1)
M = S+

3 , S
(2)
M = S−

3 , S
(3)
M = S

σM0
1 ,

(a, b) = (M0,M1) → S
(1)
M = S

(2)
M = 1, S

(3)
M = S

σZ1
3 ,

(a, b) = (M0,M3) → S
(1)
M = S

(2)
M = 1, S

(3)
M = S

σZ3
1 ,

(a, b) = (M0, Z1) → S
(1)
M = S

(2)
M = 1, S

(3)
M = S

σM1
3 ,

(a, b) = (M0, Z3) → S
(1)
M = S

(2)
M = 1, S

(3)
M = S

σM3
1 ,

(a, b): others → S
(1)
M = S

(2)
M = S

(3)
M = 1, (72)

with

S±
1/3 = 2 sinh

π(M1/3 ± Z1/3)

k
. (73)

5Here we ignore the issue of convergence of the integration in Ik,n (70) as well as the convergence of the
original integration (64), which we address more carefully in a coming paper [35].
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The expression (64) also allows us to calculate Zk,M (N) for N ≥ 0 for various values of
k,M0,M1,M3 and as a function of Z1, Z3. For the details of the calculation, see [2]. With
these exact values, we find that the correct choice of γ1, γ2, γ3 with which qPVI bilinear
relations are satisfied is very simple:

γ1 = 1, γ2 = −1, γ3 = −i. (74)

Namely, γ1, γ2, γ3 are the same for all 40 bilinear relations and they do not depend on k,M
either. Indeed, since the Fredholm determinant Det(1 + κρ̂M ) is invariant under W (D5),
we can generate several equations for the same choice of the shift directions (a, b;σc, σd, σe)
as the Weyl orbit of the other equations. In order for these equations to be satisfied at all
order in κ, the M -dependence of γ’s is highly constrained and it is rather unlikely for γ’s to
have a non-trivial dependence on M . In summary, we conjecture that the grand partition
function (62) satisfies the following bilinear relations

e−
πi
2k (σcc+σdd+σee)S

(1)
M

∏
±

Ξk,M± 1
2 (δ

a
α+δbα)(κ) + e

πi
2k (σcc+σdd+σee)S

(1)
M

∏
±

Ξk,M± 1
2 (δ

a
α−δbα)(−κ)

+ S
(3)
M

∏
±

Ξk,M± 1
2 (σcδcα+σdδdα+σeδeα)(∓iκ) = 0. (75)

Here let us display one of the simplest non-trivial examples to see that (75) is actually
satisfied. For simplicity let us consider the bilinear relation labeled by (Z1, Z3;σM0

=
−1, σM1

= +1, σM3
= −1) at (M0,M1,M3) = (− 1

2 ,
1
2 , k−

1
2 ). The bilinear equation involves

the grand partition function evaluated at the following six points:(
M0 = −1

2
,M1 =

1

2
,M3 = k − 1

2
, Z1 ±

1

2
, Z3 ±

1

2

)
→ (L1, L2, L) = (1, 0, 0),(

M0 = −1

2
,M1 =

1

2
,M3 = k − 1

2
, Z1 ±

1

2
, Z3 ∓

1

2

)
→ (L1, L2, L) = (1, 0, 0),(

M0 = −1, 1, k − 1, Z1, Z3

)
→ (L1, L2, L) = (2, 0, 0),(

M0 = 0, 0, k, Z1, Z3

)
→ (L1, L2, L) = (0, 0, 0). (76)

Here we have written the rank variables both in terms of M0,M1,M3 and in terms of
L1, L2, L to visualize the simplicity of this choice for the purpose of calculating exact values
of Zk,M (N) from (64). At order κ0 the bilinear relation reduces to (71), which is

ie−
3πi
4k

∏
±

Zk,(− 1
2 ,

1
2 ,k−

1
2 ,Z1± 1

2 ,Z3± 1
2 )
(0)− ie

3πi
4k

∏
±

Zk,(− 1
2 ,

1
2 ,k−

1
2 ,Z1± 1

2 ,Z3∓ 1
2 )
(0)

+ Zk,(−1,1,k−1,Z1,Z3)(0)Zk,(0,0,k,Z1,Z3)(0) = 0 (77)

for (a, b;σc, σd, σe) = (Z1, Z3;σM0
= −1, σM1

= +1, σM3
= −1) at (M0,M1,M3) = (− 1

2 ,
1
2 , k−

1
2 ). From (69) we can calculate the relevant Zk,M (0) as

Zk,(− 1
2 ,

1
2 ,k−

1
2 ,Z1,Z3)(0) = eπi[(−

1
2k−2)Z1Z3−(Z1+Z3)]k−

1
2 ,

Zk,(−1,1,k−1,Z1,Z3)(0) = eπi[(−
1
k−2)Z1Z3−2(Z1+Z3)]k−1

(
2 sin

π

k

)
,

Zk,(0,0,k,Z1,Z3)(0) = e−2πiZ1Z3 . (78)

Substituting these into the left-hand side of (77) we find that (77) is indeed satisfied. To test
the bilinear relation at higher order in κ it is useful to write them in terms of the normalized
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grand partition function

Ξnorm
k,M (κ) =

Ξk,M (κ)

Zk,M (0)
= 1 +

∞∑
N=1

κN Zk,M (N)

Zk,M (0)
. (79)

After substituting (78), the coefficients of the bilinear relation (75) for (a, b;σc, σd, σe) =
(Z1, Z3;σM0

= −1, σM1
= +1, σM3

= −1) at (M0,M1,M3) = (− 1
2 ,

1
2 , k − 1

2 ) reduce as

− ie−
πi
k

∏
±

Ξnorm
k,(− 1

2 ,
1
2 ,k−

1
2 ,Z1± 1

2 ,Z3± 1
2 )
(κ) + ie

πi
k

∏
±

Ξnorm
k,(− 1

2 ,
1
2 ,k−

1
2 ,Z1± 1

2 ,Z3∓ 1
2 )
(−κ)

+
(
2 sin

π

k

)
Ξnorm
k,(−1,1,k−1,Z1,Z3)

(−iκ)Ξnorm
k,(0,0,k,Z1,Z3)

(iκ) = 0. (80)

Let us look at this equation at order κ1. The exact expressions for Zk,M (1)
Zk,M (0) evaluated at

these rank variables (M0,M1,M3) are cumbersome. Here for simplicity let us further set k
to k = 2, where we have [35]

Zk,(− 1
2 ,

1
2 ,k−

1
2 ,Z1,Z3)(1)

Zk,(− 1
2 ,

1
2 ,k−

1
2 ,Z1,Z3)(0)

=
−π−1 + 2iZ1Z3 − Z1 tanπZ1 − Z3 tanπZ3 − i tanπZ1 tanπZ3

16 cosπZ1 cosπZ3

− 2(cosπZ1 + cosπZ3)− 2e−
πi
4 eπiZ1Z3(e−

πi(Z1+Z3)
2 + ie

πi(Z1−Z3)
2 + ie−

πi(Z1−Z3)
2 + e

πi(Z1+Z3)
2 )

64 cos2 πZ1 cos2 πZ3
,

Zk,(−1,1,k−1,Z1,Z3)(1)

Zk,(−1,1,k−1,Z1,Z3)(0)
=

−Z1Z3 + i(Z1 cotπZ1 + Z3 cotπZ3)− iπ−1 + cotπZ1 cotπZ3

8 sinπZ1 sinπZ3

+
eπiZ1Z3(1− cosπZ1 − cosπZ3 − cosπZ1 cosπZ3)

16 sin2 πZ1 sin
2 πZ3

,

Zk,(0,0,k,Z1,Z3)(1)

Zk,(0,0,k,Z1,Z3)(0)
=

Z1Z3

8 sinπZ1 sinπZ3
. (81)

Substituting these into the left-hand side of the bilinear equation (80) one can see that the
equation is indeed satisfied at order κ.

5 Conclusion

In this paper we have reviewed the discrete symmetry of the normalized partition function
Zk,M (N)
Zk,M (0) of the U(N − M0 − M3 + k)k,iZ1

× U(N − M1 − M3 + k)0,−iZ1
× U(N + M0 −

M3 + k)−k,−iZ3
× U(N)0,iZ3

circular quiver super Chern-Simons theory which describes
multiple M2-branes probing (C2/Z2 × C2/Z2)/Zk. This theory enjoys discrete symmetry
induced by the Hanany-Witten effect under the exchanges of the 5-branes in the type IIB
brane construction of the theory. In the Fermi gas formalism of the partition function,
this symmetry is realized as the discrete symmetry of the density matrix ρ̂M up to the
similarity transformation, which corresponds to the coordinate transformation of the curve
ρ−1
M (x, p) = const.. From the Fermi gas formalism, we also find that the normalized partition

function has a larger symmetry which is the Weyl group of D5 = SO(10). Furthermore, the
Fermi gas formalism with the genus-one quantum curve with W (D5) symmetry, together
with the TS/ST correspondence and the q-uplift of the Painlevé/gauge correspondence,
suggests that the grand partition function Ξk,M (κ) (62) satisfies the Hirota bilinear form of
the q-discrete Painlevé equation associated with D5, that is, qPVI. We have identified the
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explicit expression of the bilinear equations for Ξk,M (κ) and provided a non-trivial check for
these equations by using the exact values of Zk,M (N). Our result is a non-trivial extension
of the known connection between the grand partition function of U(N)k×U(N+M)−k ABJ
theory and qPIII3 [22]. Interestingly, the bilinear equations we have identified are satisfied
by the unnormalized grand partition function Ξk,M (κ) which is different from the Fredholm
determinant of the curve Det(1+κρ̂M ) by an overall factor Zk,M (0). Actually, it was crucial
to notice this fact, namely that the bilinear equations are satisfied by Zk,M (0) themselves,
in identifying the concrete coefficients in the bilinear equations. Since Zk,M (0) is not related
to the quantum curve, this fact may also suggest that there is another way to understand
the relation between the matrix models and q-Painlevé equations which do not rely on the
Fermi gas formalism and the TS/ST correspondence.

At the moment, although there are many pieces of evidence for the relations between
the matrix models and q-Painlvé equations, a direct proof is still missing. However, there
are several analogous relations between matrix models and integrable systems which are
actually proved. For example, the relation between the ABJ matrix model and qPIII3 was
proved in the “dual 4d limit” [49] where the ABJ matrix model reduces to the O(2) matrix
model [50] and the qPIII3 reduces to the Painlevé III3 differential equation [51]. There is
also a related study for higher Painlevé equation [52]. It would be interesting to prove the q-
Painlevé bilinear relations for the grand partition functions directly from the matrix models
hinted by these known results. Finding such a proof would also give an indirect proof for
the TS/ST correspondence, as claimed in [49] for q → 1 limit.
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