Large Field and Small Field Inflation Models in Confrontation with Planck2018 and BICEP2018 Datasets

Document Type : Regular article


1 Department of Theoretical Physics, Faculty of Science, University of Mazandaran, P. O. Box 47416-95447, Babolsar, IRAN

2 University of Mazandaran, Department of Theoretical Physics.


We study the non-minimal inflation with both the large field and small field potentials in the context of the new observational data. We analyze the linear and non-linear perturbations to obtain the scalar spectral index, tensor-to-scalar ratio, and nonlinearity parameter. By performing a numerical analysis on the scalar spectral index and tensor-to-scalar ratio, and comparing the results with Planck2018 TT, TE, EE+lowE+lensing+BAO+BK14(18) data, we find that the non-minimal large field inflation is observationally viable if the non-minimal coupling parameter is of the order of $10^{-3}$. The same analysis on the non-minimal small field inflation gives the values for the non-minimal coupling parameter as $10^{-4}$. We also study the non-Gaussian features in both equilateral and orthogonal configurations for large and small field potentials and find small values for these amplitudes, consistent with Planck2018 TTT, EEE, TTE and EET data. We show that the absolute values of the non-linearity parameter, $f_{NL}$, is larger in large field inflation than the small field model for both configurations. Also, we obtain more severe constraints on the parameter $p$ in the introduced large field and small field potentials with respect to previously reported constraints.


Main Subjects

 [1] A. H. Guth, "Inflationary universe: A possible solution to the horizon and flatness problems", Phys. Rev. D 23, 347 (1981). DOI: 10.1103/PhysRevD.23.347
[2] A. D. Linde, "A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems", Phys. Lett. B 108 (1982). DOI: 10.1016/0370-2693(82)91219-9
[3] A. Albrecht and P. Steinhardt, "Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking", Phys. Rev. Lett. 48, 1220 (1982). DOI: 10.1103/PhysRevLett.48.1220
[4] A. D. Linde, Particle Physics and Inflationary Cosmology. Harwood, Chur, Switzerland (1990).
[5] A. Liddle and D. Lyth, Cosmological Inflation and Large-Scale Structure. Cambridge University Press (2000).
36 Mozhdeh Bitaj et al.
[6] J. E. Lidsey et al, "Reconstructing the inflaton potential|an overview", Rev. Mod. Phys. 69, 373 (1997). DOI: 10.1103/RevModPhys.69.373
[7] A. Riotto, "Inflation and the theory of cosmological perturbations", ICTP Lect. Notes Ser. 14 (2003) 317-413, [arXiv: hep-ph/0210162]. DOI: 10.48550/arXiv.hep-ph/0210162
[8] D. H. Lyth and A. R. Liddle, The Primordial Density Perturbation. Cambridge University Press (2009).
[9] J. M. Maldacena, "Non-gaussian features of primordial fluctuations in single field inflationary models", JHEP 0305, 013 (2003). DOI: 10.1088/1126-6708/2003/05/013
[10] N. D. Birrell and P. C.W. Davies, Quantum Fields in Curved Space. Cambridge Univ Press (1982).
[11] V. Faraoni, "Nonminimal coupling of the scalar field and inflation", Phys. Rev. D 53, 6813 (1996). DOI: 10.1103/PhysRevD.53.6813
[12] V. Faraoni, "Inflation and quintessence with nonminimal coupling", Phys. Rev. D 62, 023504 (2000). DOI: 10.1103/PhysRevD.62.023504
[13] A. Zee, "Broken-Symmetric Theory of Gravity", Phys. Rev. Lett. 42, 417 (1979). DOI: 10.1103/PhysRevLett.42.417
[14] F. S. Accetta, D. J. Zoller and M. S. Turner, "Induced-gravity inflation", Phys. Rev. D 31, 3046 (1985). DOI: 10.1103/PhysRevD.31.3046
[15] S. Randjbar-Daemi, A. Salam, and J. Strathdee, "On Kaluza-Klein cosmology", Phys. Lett. B 135, 388 (1984). DOI:
[16] T. Futamase and K. I. Maeda, "Chaotic inflationary scenario of the Universe with a nonminimally coupled "inflaton" field", Phys. Rev. D 39, 399 (1989). DOI: 10.1103/PhysRevD.39.399
[17] D. S. Salopek, J. R. Bond and J. M. Bardeen, "Designing density fluctuation spectra in inflation", Phys. Rev. D 40, 1753 (1989). DOI: 10.1103/PhysRevD.40.1753
[18] R. Fakir and W. G. Unruh, "Improvement on cosmological chaotic inflation through nonminimal coupling", Phys. Rev. D 41, 1783 (1990). DOI: 10.1103/PhysRevD.41.1783
[19] N. Makino and M. Sasaki, "The Density Perturbation in the Chaotic Inflation with Non-Minimal Coupling", Progress of Theoretical Physics, 86, 103 (1991). DOI: 10.1143/ptp/86.1.103
[20] J. Hwang and H. Noh, "COBE constraints on inflation models with a massive nonminimal scalar field", Phys. Rev. D 60, 123001 (1999). DOI: 10.1103/PhysRevD.60.123001
[21] S. Tsujikawa and H. Yajima, "New constraints on multifield inflation with nonminimal couplin", Phys. Rev. D 62, 123512 (2000). DOI: 10.1103/PhysRevD.62.123512
[22] C. Pallis, N. Toumbas, "Non-minimal sneutrino inflation, Peccei-Quinn phase transition and non-thermal leptogenesis", JCAP 1102, 019 (2011). DOI: 10.1088/1475-7516/2011/02/019
[23] K. Nozari and S. Shafizadeh, "Non-minimal inflation revisited", Physica Scripta, 82, 015901 (2010). DOI: 10.1088/0031-8949/82/01/015901
[24] N. Aghanim, Y. Akrami, M. Ashdown, J. Aumont, C. Baccigalupi, "Erratum: Planck 2018 results: VI. Cosmological parameters", Astronomy and Astrophysics 641, A6 (2020). DOI: 10.1051/0004-6361/201833910e
[25] Y. Akrami, F. Arroja, M. Ashdown, J. Aumont, C. Baccigalupi, "Planck 2018 resultsX. Constraints on inflation", stronomy and Astrophysics 641, A10 (2020). DOI: 10.1051/0004-6361/201833887
[26] P. A. R. Ade, Z. Ahmed, M. Amiri, D. Barkats, R. B. Thakur, "Improved Constraints on Primordial Gravitational Waves using Planck, WMAP, and BICEP/Keck Observations through the 2018 Observing Season", Phys. Rev. Lett. 127, 151301 (2021). DOI: 10.1103/PhysRevLett.127.151301
[27] D. Paoletti, F. Finelli, J. Valiviita and M. Hazumi, "Planck and BICEP/Keck Array 2018 constraints on primordial gravitational waves and perspectives for future Bmode polarization measurements", Phys. Rev. D 106, 083528 (2022). DOI: 10.1103/PhysRevD.106.083528
[28] Y. Akrami, F. Arroja, M. Ashdown, J. Aumont, C. Baccigalupi, "Planck 2018 results. IX. Constraints on primordial non-Gaussianity", Astronomy and Astrophysics, 641, A9 (2019). DOI: 10.1051/0004-6361/201935891
[29] J. Bardeen, "Gauge-invariant cosmological perturbations", Phys. Rev. D 22, 1882 (1980). DOI: 10.1103/PhysRevD.22.1882
[30] V. F. Mukhanov, H. A. Feldman, R. H. Brandenberger, "Theory of cosmological perturbations", Physics Reports 215, 203 (1992). DOI: 10.1016/0370-1573(92)90044-Z
[31] Daniel Baumann, "TASI Lectures on Inflation", [arXiv:0907.5424] (2009). DOI: 10.48550/arXiv.0907.5424
[32] A. De Felice and S. Tsujikawa, "Inflationary non-Gaussianities in the most general second-order scalar-tensor theories", Phys. Rev. D 84, 083504 (2011). DOI: 10.1103/PhysRevD.84.083504
[33] A. De Felice and S. Tsujikawa, "Primordial non-gaussianities in general modified gravitational models of inflation", JCAP 1104, 029 (2011). DOI: 10.1088/1475-7516/2011/04/029
[34] C. Cheung, P. Creminelli, A. L. Fitzpatrick, J. Kaplan and L. Senatore, "The effective field theory of inflation", JHEP 0803, 014 (2008). DOI: 10.1088/1126-6708/2008/03/014
[35] D. Seery and J. E. Lidsey, "Primordial non-Gaussianities in single-field inflation", JCAP, 0506, 003 (2005). DOI: 10.1088/1475-7516/2005/06/003
[36] A. De Felice, S. Tsujikawa, "Shapes of primordial non-Gaussianities in the Horndeski’s most general scalar-tensor theories", JCAP, 03, 030 (2013). DOI: 10.1088/1475-7516/2013/03/030
[37] J. Martin, C. Ringeval, R. Trotta & V. Vennin, "The best inflationary models after Planck", JCAP, 1403, 039 (2014). DOI: 10.1088/1475-7516/2014/03/039
[38] L. Senatore, "Lectures on inflation", Theoretical Advanced Study Institute in Elementary Particle Physics: new frontiers in fields and strings (2016).
[39] S. Maity, P. Rudra, "Inflation driven by Barrow holographic dark energy", JHAP 2 (1), 1-12 (2022), DOI: 10.22128/jhap.2022.464.1012
[40] S. Upadhyay, "Bouncing universe for deformed non-minimally coupled inflation model", JHAP 3 (1), 57-70 (2023), DOI: 10.22128/jhap.2023.651.1038 
Volume 3, Issue 4
November 2023
Pages 23-38
  • Receive Date: 02 October 2023
  • Revise Date: 30 October 2023
  • Accept Date: 02 November 2023